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These are notes of the lecture courses given in 2024 in two summer schools: at ICTP
in Trieste and at IME-USP in São Paulo. We give an elementary account of p-adic
methods in de Rham cohomology of algebraic hypersurfaces with explicit examples and
applications in number theory and combinatorics. The main source is the series of our
joint papers with Frits Beukers entitled Dwork crystals ([5, 6, 7]). These methods also
have applications in mathematical physics and arithmetic geometry ([8, 9]), which we
overview here towards the end.

I would like to dedicate these lectures to the defenders of Ukraine, with gratitude for the
possibility to live and work at the time when our country is being under constant military
attacks.
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1. Counting points on algebraic varieties over finite fields

For an algebraic variety X over a finite field Fp there exist non-negative integers m, k

and algebraic numbers α1, . . . , αm, β1, . . . , βk ∈ Q such that numbers of points on X over
all field extensions are given by

(1) #X(Fps) =
m∑
i=1

αs
i −

k∑
j=1

βs
j for all s ≥ 1.

We will refer to αi’s and βj’s as the Frobenius roots of X. Their existence was proved
by Bernard Dwork circa 1960 using p-adic methods. The natural building blocks in
Dwork’s approach were hypersurfaces. We are going to elaborate explicit p-adic formulas
for Frobenius roots of hypersurfaces and explore related algebraic constructions.

1.1. Affine and projective algebraic varieties. An affine algebraic variety X over a
field k is a common zero locus of a collection of multivariate polynomials f1(x), . . . , fm(x) ∈
k[x1, . . . , xn]. Sets of points of X over any field extension K ⊇ k are defined as

X(K) = {x = (x1, . . . , xn) ∈ Kn : f1(x) = . . . = fm(x) = 0}.
If there are no equations (m = 0) we denote X = An, the n-dimensional affine space. In
this case one simply has An(K) = Kn.
More general algebraic varieties are glued of affine pieces. A straightforward example

of such a glueing is given by projective spaces and projective varieties. The n-dimensional
projective space Pn is the variety of lines through the origin in An+1. Its sets of points
are given by

Pn(K) = (Kn+1 \ {0})/K× = {(x0, . . . , xn) ∈ Kn+1 : ∃i xi ̸= 0}/ ∼,

where ∼ denotes the homothety equivalence (x0, . . . , xn) ∼ (cx0, . . . , cxn) for all c ∈ K×.
The respective equivalence class is denoted by [x0 : . . . : xn]. These brackets are called
the homogeneous coordinates on Pn. The n-dimensional projective space can be covered
by n+ 1 affine spaces

Pn = ∪n
i=0Ui, Ui = {[x0 : . . . : xn] : xi ̸= 0} ∼= An,

[x0 : . . . : xn] 7→ (
x0

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xn

xi

).

A projective variety X ⊂ Pn is a common zero locus of a collection of homogeneous
polynomials F1(x), . . . , Fm(x) ∈ k[x0, . . . , xn]. It is a union X = ∪n

i=0Xi of affine varieties
Xi = X ∩Ui. Here Xi can be identified with the zero locus of polynomials in n variables
given by fj(x0, . . . , xi−1, xi+1, . . . , xn) = Fj(x0, . . . , xi−1, 1, xi+1, . . . , xn) for j = 1, . . . ,m.

Exercise 1. Let a, b, c ∈ k. The projective cubic curve

x0x
2
1 = x3

2 + ax0x
2
2 + bx2

0x2 + cx3
0

is given in the affine sheet U0 ⊂ P2 by the equation y2 = x3 + ax2 + bx+ c in coordinates
(x, y) = (x2

x0
, x1

x0
). Check that the only point on this curve in P2 \ U0 is O = [0 : 1 : 0].

Look up the definition of non-singular algebraic varieties and check that this curve is
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non-singular whenever the polynomial x3 + ax2 + bx + c has no multiple roots. If is the
case, this curve is called an elliptic curve.

Non-singular cubic curves with a specified point O defined over k are called elliptic
curves over k. When the characteristic of k is not equal to 2 or 3 such a curve can be
always given by an equation as above in a suitably chosen system of coordinates.

1.2. Weil conjectures. Let p be a prime number and X be an algebraic variety over
the finite field with p elements k = Fp. The natural generating series for the numbers of
points #X(Fps) turns out to be

ZX(T ) = exp

(
∞∑
s=1

#X(Fps)
T s

s

)
∈ QJT K.

This formal series is called the local zeta function of X. The naturality of the above
definition of a zeta function is explained by the following fact.

Theorem 2 (Dwork, [13]). The local zeta function of an algebraic variety1 X over Fp is
rational:

ZX(T ) ∈ Q(T ).

Writing this rational function as
∏k

j=1(1−βjT )/
∏m

i=1(1−αiT ) we obtain expression (1)
for the numbers of points on X over the extensions of Fp.
The statement of Theorem 2 was the first one on the list of properties of local zeta

functions which were conjectured by André Weil in 1940s. The rest of Weil’s conjectures
concerns non-singular projective varieties X. If X is such a variety of dimension n then

ZX(T ) =
2n∏
i=0

Pi(T )
(−1)i−1

=
P1(T ) . . . P2n−1(T )

P0(T ) . . . P2n(T )

where Pi ∈ 1 + TZ[T ] are integral polynomials with the following properties:

(RH) P0(T ) = 1−T , P2n(T ) = 1−pnT and for 1 ≤ i ≤ 2n−1 polynomials Pi(T ) factor

over C as Pi(T ) =
∏βi

j=1(1− αi,jT ) with αi,j ∈ Q satisfying |αij| = pi/2.

(FE) ZX(
1

pnT
) = ±(pn/2T )χ(X)ZX(T ) where χ(X) is the Euler characteristic of X; in

particular, for every αi,j we have that pn/αi,j is a reciprocal root of P2n−i(T ).
(TOP) If X can be lifted to a smooth variety defined over a number field then degPi(T )

equals to the ith Betti number of the topological space of complex points of this
variety.

Everything which was said above also holds true for varieties over finite fields Fq where
q is a power of p, and one should substitute p with q throughout the statement of the
Weil conjectures. We restrict to the case of Fp for brevity. These conjectures were proved
in 1960s and 1970s leading to the creation of p-adic and étale cohomology theories, with
contributions by Bernard Dwork, Alexander Grothendieck, Michael Artin, Pierre Deligne
and many other mathematicians.

Exercise 3. Compute the local zeta functions of An and Pn.

Exercise 4. Consider a non-singular projective conic (that is, a curve of degree two) C ⊂
P2. Assuming C has a point over Fp, show that its zeta function is given by 1

(1−T )(1−pT )
.

For this purpose you may fill the details in the following argument over a field K = Fps:
every line through our specified point (defined over k = Fp) will have one other point of

1In this theorem algebraic varieties are assumed to be of finite type, which means they can be covered
by finite number of affine pieces. It is a standard assumption in the definition of varieties.
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intersection with the conic; the line is defined over K if and only if this other point is
defined over K; hence #C(K) = #P1(K) = ps + 1.

Computation of zeta functions of cubic curves is more sophisticated. The zeta function
of an elliptic curve E ⊂ P2 defined over Fp is given by

(2) ZE(T ) =
1− apT + pT 2

(1− T )(1− pT )
,

where the number ap = p + 1 −#E(Fp) ∈ Z is called the Frobenius trace of E. Helmut
Hasse proved that |ap| ≤ 2

√
p. Note that this implies that the discriminant of the

quadratic polynomial in the denominator is ≤ 0. If the discriminant could be 0 we would
have ap = 2

√
p /∈ Z. Hence the two reciprocal roots are complex conjugate and have

absolute value
√
p in agreement with (TOP). The Sato–Tate conjecture is a statement

about the distribution of numbers ap/(2
√
p) in the interval [−1, 1] when p varies and E

is an elliptic curve without complex multiplication defined over Q. This conjecture was
proved by Laurent Clozel, Michael Harris, Nicholas Shepherd-Barron, and Richard Taylor
circa 2008 under mild assumptions. The proof was completed by Thomas Barnet-Lamb,
David Geraghty, Harris, and Taylor in 2011. Several generalizations to other algebraic
varieties are open. We wanted to mention this to motivate our interest in the knowledge
of Frobenius roots.

1.3. The role of hypersurfaces in proving rationality of local zeta functions.
Dwork’s proof of Theorem 2 used p-adic analysis. The building blocks of this proof are
algebraic varieties given by one equation. Such varieties are called hypersurfaces.

Proposition 5. It suffices to prove Theorem 2 for affine hypersurfaces.

Proof. An algebraic variety can be covered by a finite number of affine pieces whose
intersections are also affine.2 IfX = ∪m

i=1Xi is such a covering then the inclusion-exclusion
principle reduces the count of points on X to the count of points on its affine pieces:

(3) #(∪m
i=1Xi)(Fps) =

m∑
k=1

(−1)k−1
∑

1≤i1≤...≤ik≤m

#(Xi1 ∩ . . . ∩Xik)(Fps).

Now let X be an affine variety of common zeroes of polynomials f1(x), . . . , fm(x) ∈
Fp[x1, . . . , xn]. For a polynomial f ∈ Fp[x1, . . . , xn] we denote the hypersurface of its
zeroes by

Xf = {x : f(x) = 0}.
Then X = Xf1 ∩ Xf2 ∩ . . . ∩ Xfm . We also note that the union of hypersurfaces is
again a hypersurface: Xf1 ∪Xf2 ∪ . . .∪Xfm = Xf1·...·fm . Let us apply inclusion-exclusion
formula (3) with Xi = Xfi . Since in the left-hand side of (3) we have a hypersurface, this
formula allows to do induction on the number m of equations. When m = 2 one has

#(Xf1·f2)(Fps) = #Xf1(Fps) + #Xf1(Fps)−#(Xf1 ∩Xf2)(Fps),

which expresses the zeta function of an intersection of two hypersurfaces as a ratio of
zeta functions of single hypersurfaces. Similarly, formula (3) expresses zeta function of
an intersection of m hypersurfaces (the last term in the right-hand side) as a ratio of zeta
functions of varieties given by less than m equations. □

2An algebraic variety X is of finite type if it can be covered by a finite number of affine pieces. Under
an additional assumption that X is separated, this covering can be refined to satisfy the property that
intersections are also affine. Here we give a proof for separated varieties. Without this assumption one
needs to proceed in two steps. First, we deduce rationality of zeta functions for separated varieties.
Second, we note that intersections of affine varieties are separated and apply the inclusion-exclusion
argument using separated varieties instead of hypersurfaces.
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In the above proof one can also see that having an effective method of computing
Frobenius roots for hypersurfaces would be sufficient, as Frobenius roots of general va-
rieties occur among the roots of their affine pieces. Of course some cancellations would
happen in the multiplication and division of zeta functions of pieces.

1.4. Weil cohomology and de Rham cohomology. André Weil suggested that his
conjectures would follow from the existence of a suitable cohomology theory for varieties
over finite fields, similar to the usual (singular) cohomology for complex varieties. For a
variety X over Fp there is the pth power Frobenius map on the set X(Fp) of its points

defined over all extensions of the ground field. Here Fp denotes the algebraic closure
of Fp. The Frobenius map is expressed locally as raising coordinates of points to the

pth power: (x1, . . . , xn) 7→ (xp
1, . . . , x

p
n). Since Fps ⊂ Fp can be identified as the set of

solutions to the eqiation xps = x, we see that X(Fps) ⊂ X(Fp) is the set of fixed points
of the sth power of the Frobenius map for every s ≥ 1. In algebraic topology the number
of fixed points of a continuous map can be worked out using the Lefschetz fixed-point
theorem, given as an alternating sum of traces of the induced map on its cohomology
groups. Weil anticipated existence of a cohomology theory which would asoociate to a
variety over a finite field vector spaces over a field F of characteristic zero (cohomology
groups) along with a canonical linear map on them, traces of powers of which would
count points over the extensions of the ground field. Such a map would be also called
the Frobenius map, and we called the αi’s and βj’s in formula (1) the Frobenius roots
referring to this hypothetical Frobenius map. One could also call them the Frobenius
eigenvalues, or simply the reciprocal roots of the zeta function.

As was mentioned in §1.2, such cohomology theories were constructed in subsequent
decades with coefficients in F = Qℓ, ℓ ̸= p (ℓ-adic or étale cohomology)3 and F = Qp

(p-adic or rigid cohomology).
The advantage of p-adic cohomology theory is that it allows to determine Frobenius

maps explicitly. For non-singular affine and projective varieties X over Q for almost all
primes p the p-adic cohomology groups (of the reduction of X modulo p) are isomorphic
toH i

dR(X,Q)⊗QQp, whereH
i
dR is the ith algebraic de Rham cohomology group. Roughly,

the de Rham cohomology groups of an affine variety are given by

H i
dR(X,Q) =

closed differential i-forms on X

exact differential i-forms on X

with 0 ≤ i ≤ dimX. Thus the Frobenius map is a p-adic operation on equivalence classes
of differential forms which is responsible for counting points on X over all Fps . In §3 we
will construct such an operation explicitly in the case of affine hypersurfaces.

2. Congruences

2.1. Warming up with p-adic numbers.

Lemma 6. Let a, b ∈ Z and s ≥ 1. If a ≡ b(mod ps) then ap ≡ bp(mod ps+1).

Proof. Let us write a = b+ cps and raise to the pth power:

ap = (b+ cps)p = bp +

p∑
i=1

(
p

i

)
bp−icipsi ≡ bp(mod ps+1)

because for i = 1 we have
(
p
1

)
ps = p1+s and terms with higher i are divisible by pis with

is ≥ 2s ≥ s+ 1. □

3There is also étale cohomology with ℓ = p.
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For a ∈ Z, let us start with the known congruence ap ≡ a(mod p) and raise it to pth
power multiple times. The above lemma yields

ap
s ≡ ap

s−1

(mod ps) for s ≥ 1.

It follows that the sequence ap
s
has a limit in the ring of p-adic integers Zp.

Exercise 7. For a ∈ Z denote

τ(a) = p-adic lim
s→∞

ap
s ∈ Zp.

Show that

(i) τ(a) ≡ a(mod p),
(ii) τ(a)p = τ(a), and
(iii) τ(a) = τ(b) if a ≡ b(mod p).

It is clear that τ(a) = 0 when p|a and otherwise τ(a) ∈ Z×p is a p-adic unit satisfying

τ(a)p−1 = 1. Due to (iii) the map τ is naturally defined on the set of residues Z/pZ = Fp.
We also conclude from the above exercise that there are p − 1 different (p − 1)st roots
of unity in Zp and they are naturally indexed by non-zero residues modulo p. We thus
obtain a multiplicative character

τ : F×p → Z×p ,
which is called the Teichmüller character.

The existence of (p − 1)st roots of unity as well as many other algebraic numbers in
Zp could be also derived from a fundamental lemma due to Kurt Hensel.

Exercise 8. (i) Prove Hensel’s lemma:
Let P (T ) ∈ Zp[T ] be a monic polynomial and α ∈ Fp be a simple root of P modulo
p, that is P (α) = 0 and P ′(α) ̸= 0. Then there exists a unique lift α ∈ Zp,
α ≡ α(mod p) such that P (α) = 0.

(ii) Use Hensel’s lemma to construct the Teichmüller character τ .

We would like to observe that Lemma 6 holds for elements a, b of any unital commuta-
tive ring if one reads congruences modulo ps as modulo the principal ideal (ps) of this ring.
The proof given above also reads in this more abstract setting. In the following subsection
we will attempt to run the above process of multiple raising to power p taking as the
input a multivariate polynomial f(x) with coefficients in Z instead of an integer a ∈ Z.
This situation is different already modulo p because we have f(x)p ≡ f(xp)(mod p) and
therefore one can not conclude that the sequence f(x)p

s
tends to a limit.

2.2. Lifting Hasse–Witt matrices. Our main object is a multivariable Laurent poly-
nomial

f(x) ∈ R[x±11 , . . . , x±1n ]

with coefficients in a commutative characteristic zero ring R. About this ring we will
assume that

∩s≥1 p
sR = {0}.

In particular, this defines the p-adic topology on R (two elements are close when their
difference belongs to psR for a high s) and one can embed R into its p-adic completion

R̂ = lim
←

R/psR.

The Newton polytope of f(x) is the convex hull in Rn of the set of exponent vectors
of monomials occuring in f(x). It is denoted by ∆ = ∆(f). We shall use the notation
xu = xu1

1 . . . xun
n for u ∈ Zn. One can then write f =

∑
u∈Zn fux

u with coefficients
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au ∈ R. The support supp(f) = {u : fu ̸= 0} is a finite subset of Zn, and the Newton
polytope ∆ ⊂ Rn is precisely the convex hull of supp(f).
Let ∆◦ denote the interior of ∆ in the Euclidean topology and

∆◦Z = ∆◦ ∩ Zn

be the set of internal integral points of the Newton polytope.

Example 9. Here we see the Newton poly-
tope ∆ of the two variable Laurent polyno-
mial f(x) = x1+x2+

1
x1x2

. Any other poly-
nomial of the form

f(x) = f(1,0) x1 + f(0,1) x2

+f(−1,−1)
1

x1x2

+ f(0,0)

with non-zero coefficients

f(1,0), f(0,1), f(−1,−1) ̸= 0

will have same Newton polytope ∆. The set
of internal integral points of this polytope is
∆◦Z = {0}.

Assume that the number of internal integral points g = #∆◦Z is non-zero. We then
define a sequence of g×g matrices {βm;m ≥ 1} with entries in R whose rows and columns
are indexed by the elements of ∆◦Z:

(βm)u,v∈∆◦
Z
= coefficient of xvm−u in f(x)m−1.

By convention, β1 is the identity matrix. We are going to describe congruences satisfied
by these matrices.

A Frobenius endomorphism σ : R → R is a ring endomorphism such that

σ(r) ≡ rp (mod pR) for every r ∈ R.

In other words σ lifts the pth power endomorphism on the ring R/pR, and therefore it
is also called a Frobenius lift. For example, on R = Z the identity σ = id is a Frobenius
endomorphism. On the ring of polynomials R = Z[t] one can take σ : r(t) → r(tp).
In the following theorem Frobenius endomorphisms will be applied entry-wise to g× g

matrices with entries in R.

Theorem 10 ([21]). For every Frobenius endomorphism σ : R → R one has

βps ≡ βp · σ(βp) · . . . · σs−1(βp) (mod p).

Assuming that det(βp) is invertible modulo p, one has congruenecs

βps+1 · σ(βps)
−1 ≡ βps · σ(βps−1)−1 (mod ps)

for every s ≥ 1.

Some remarks are needed to the statement of this theorem. In the first congruence
(mod p) should be read as (mod pRg×g), where Rg×g is the ring of g × g matrices with
entries in R. Next, we would like to note the following.

Remark 11. An element r ∈ R is invertible in the p-adic completion ring R̂ ⊇ R
if and only if its image in R/pR is invertible. The implication ⇒ is clear. For the
inverse implication ⇐ we observe that if r, u, w ∈ R are such that ru = 1 + pw then the

multiplicative inverse of r in R̂ is given by r−1 = u(1 + pw)−1 = u
∑

m≥0(−1)mpmwm.
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If det(βp) is invertible in R/pR then all det(βps) are also invertible in R/pR because the

first congruence implies that det(βps) ≡ det(βp)
1+p+...+ps−1

(mod p). Then βps and σ(βps)

are invertible as matrices with entries in R̂, and the second congruence is valid modulo

(mod psR̂g×g). One can multiply it by the invertible element σ(det(βps) det(βps−1)) to
have a congruence modulo psRg×g.

The matrix βp is known as the Hasse–Witt matrix. The reader can find a geometric
interpretation of βp(mod p) for non-singular projective hypersurfaces in [17]. In the cited
paper Nicholas Katz proves that the characteristic polynomial of βp is congruent modulo p
to a factor of the local zeta function over Fp. If βp is invertible modulo p, which is the case
whenever det(βp) is an invertible element of R/pR, we say that the Hasse–Witt condition
holds, or that p is an ordinary prime for our hypersurface f(x) = 0. A straightforward
consequence of Theorem 10 is that when the Hasse–Witt condition holds then there exists
the limiting matrix

Λp = p-adic lim
s→∞

βps · σ(βps−1)−1 ∈ R̂g×g.

Exercise 12. Read the elementary proof of Theorem 10 in [21, §2-3]. Unfortunately, that
proof does not give any clues about the nature of matrices Λp.

In the case ofR = Z we have associated to the Laurent polynomial f(x) ∈ Z[x±11 , . . . , x±1n ]
a collection of p-adic matrices Λp ∈ Zg×g

p for all ordinary primes p. Note that

Λp ≡ βp (mod p)

and therefore the eigenvalues of Λp are p-adic units. Numerical experiments in [21]
suggested that, in the case R = Z, the eigenvalues of Λp are Frobenius roots of the
hypersurface f(x) = 0 over the finite field Fp. This claim will be demonstrated as a
by-product of the theory developed in §3-4.
In §3-4 we will work with differential forms on the complement of the hypersurface

f(x) = 0. We will introduce a p-adic operation on them, the Cartier operation. Assuming

the Hasse–Witt condition holds, we will construct a free R̂-module of rank g with a natural
basis corresponding to internal integral points of the Newton polytope ∆. We call this
module the unit-root crystal associated to our hypersurface and a subset ∆◦ ⊂ ∆. We will
prove that Λp is a matrix of the Cartier operation on the unit-root crystal (Theorem 34
for µ = ∆◦). In §4 this will give a conceptual proof of congruences in Theorem 10, which
is alternative to the above mentioned elementary proof given in [21].

In the rest of this section we will overview some examples in which matrices Λp can be
given explicitly. Their proofs will be postponed to later sections, when we will have all
necessary tools in our hands.

2.3. Atkin and Swinnerton-Dyer congruences. Consider

f(x, y) = y2 − x3 − Ax−B with A,B ∈ Z
such that the curve f(x, y) = 0 is non-singular (elliptic curve, see Exercise 1). Consider
the expansion of the differential form ω = 1

2
dx/y in the local parameter u = −x/y near

the infinite point O:

dx

2y
= (1 + 2Au4 + 3Bu6 + 6A2u8 + 20BAu10 + . . .) du =

(∑
m≥1

αmu
m

)
du

u
.

It turns out that αm is the coefficient of xm−1 in (x3+Ax+B)(m−1)/2 when m is odd and
αm = 0 when m is even. In[20, Example 0.4(a)] Jan Stienstra attributes this observation
to Frits Beukers.
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Exercise 13. Let p be an odd prime. Check that αp ≡ ap(mod p), where ap = p −
#{(x, y) ∈ F2

p : f(x, y) = 0} is the Frobenius trace of this elliptic curve, (2).

More generally, these expansion coefficients satisfy the Atkin and Swinnerton-Dyer
congruences ([2]):

(4) αm − ap αm/p + pαm/p2 ≡ 0 (mod pordp(m)).

Our 1× 1 matrices βm are given by

βm = coefficient of xm−1ym−1 in (y2 − x3 − Ax−B)m−1 = (−1)(m−1)/2
(
m− 1
m−1
2

)
αm.

Thus βp ≡ αp ≡ ap(mod p), and the Hasse–Witt condition holds for those primes p for
which this elliptic curve is ordinary. In this case Theorem 10 shows that βps ∈ Z×p for all

s ≥ 1. Since
(ps−1

ps−1
2

)
∈ Z×p , we conclude that αps ∈ Z×p . From the properties of the p-adic

gamma function ([18, §IV.2]) it is clear that(
ps − 1
ps−1
2

)
/

(
ps−1 − 1
ps−1−1

2

)
=

Γp(p
s)

Γp(
ps+1
2

)2
(ps)
≡ Γp(0)

Γp(
1
2
)2

= (−1)(p+1)/2.

Multiplying by (−1)
ps−ps−1

2 = (−1)
p−1
2 we obtain 1. Therefore

βps/βps−1 ≡ αps/αps−1 (mod ps)

and Λp = lims→∞ βps/βps−1 = lims→∞ αps/αps−1 Dividing the Atkin–Swinnerton-Dyer
congruence αps − apαps−1 + pαps−2 ≡ 0(mod ps) by the p-adic unit αps−2 and tending
s → ∞ we conclude that the limit Λp satisfies

Λ2
p − apΛp + p = 0.

Hence Λp ∈ Z×p is a Frobenius root of our ordinary elliptic curve and one has

#E(Fps) = 1 + ps − Λs
p − (p/Λp)

s, s ≥ 1.

The fact that Λp is a Frobenius root will also follow from our constructions, see Corol-
lary 23, and Atkin and Swinnerton–Dyer congruences can be back-engineered from this
fact.

In [20] Stienstra generalizes the Atkin and Swinnerton–Dyer congruences congruences
to a wide class of projective varieties.

2.4. Dwork congruences. Take

f(x) = 1− tg(x)

with g(x) ∈ Z[x±11 , . . . , x±1n ]. Assume that the Newton polytope ∆ of g(x) has only one
interior integral point, and that this point is the origin: ∆◦Z = ∆◦ ∩ Zn = {0}. In this
case ∆ is also the Newton polytope of f(x). One can start with R = Z[t].
For i ≥ 0 we denote by ci the constant term of g(x)i. Consider the formal series

γ(t) =
∑∞

i=0 cit
i ∈ Z[[t]] and its truncations γm(t) =

∑m−1
i=0 cit

i. We have

βp(t) = constant term in (1− tg(x))p−1 =

p−1∑
i=0

(−1)i
(
p− 1

i

)
cit

i ≡ γp(t) (mod p).

The Hasse-Witt condition will be satisfied if we add the inverse of the polynomial βp(t) to

our ring, so we take the bigger ring R = Z[t, βp(t)
−1] ⊂ ZJtK. Its p-adic completion R̂ ⊂

Z[t, βp(t)
−1]̂⊂ ZpJtK consists of series that can be approximated p-adically by rational
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functions whose denominators are powers of βp(t). As a consequence if Theorem 10 there
exists the p-adic limit

Λp(t) = p-adic lim
s→∞

βps(t)

βps−1(tp)
∈ Z[t, βp(t)

−1] .̂

The computation of this p-adic limit can be achieved by careful analysis of congruence
properties for the binomial coefficients (−1)i

(
ps−1

i

)
occuring in βps(t) in contrast to γps(t),

and one finds that in fact

Λp(t) =
γ(t)

γ(tp)
.

The reader may find a similar limit computation in [5, Example 5.5]. We prefer to omit
the details here, as they will distract us from our main topic. Moreover, in the proof of
Theorem 29 we will be able to obtain this expression for Λp(t) in a more conceptual way.
One can conclude that

(5)
γ(t)

γ(tp)
∈ Z[t, γp(t)−1] ,̂

which follows from our expression for Λp(t) and the fact that the p-adic completions
p-adic completions Z[t, βp(t)

−1]̂ and Z[t, γp(t)−1]̂ are equal (see the exercise below).

Exercise 14. Let s(t) ∈ Z[t] be a polynomial such that p ∤ s(0). Consider the p-adic
completion Z[t, s(t)−1] :̂

(i) embed this ring into ZpJtK;
(ii) show that this ring depends only on s(t)(mod p), that is for any s̃(t) ∈ Z[t] such

that s̃(t) ≡ s(t)(mod p) one has Z[t, s(t)−1]̂= Z[t, s̃(t)−1] ;̂
(iii) show that the Frobenius lift σ : t 7→ tp on ZpJtK preserves the ring Z[t, s(t)−1] .̂

Let us look again at (5). It is a very non-trivial conclusion that the series γ(t)/γ(tp)
can be approximated p-adically by rational functions. This fact and particular examples
of such approximations were discovered by Bernard Dwork for certain class of hyperge-
ometric series γ(t), see e.g. [12, §5] and [15, §3]. His results can be generalized in our
setup in the following way.

Theorem 15 (Dwork’s congruences, [19] and [6]). Let g(x) ∈ Z[x±11 , . . . , x±1n ] be a Lau-
rent polynomial such that the origin 0 ∈ Rn is the only interior integral point in its
Newton polytope. Consider the generating series of constant terms of its powers

γ(t) =
∞∑
i=0

cit
i, ci = coefficient of x0 in g(x)i.

Then for any prime p and integer m ≥ 1 we have

γ(t)

γ(tp)
≡ γm(t)

γm/p(tp)
(mod pordp(m)),

where γm(t) =
∑m−1

i=0 cit
i denotes the truncation of the beginning m terms in γ(t).

The proof of this theorem will become apparent in §4.3 (see Exercise 33). Dwork noted
that (5) yields a way to evaluate γ(t)/γ(tp) at certain points t0 ∈ Z×p while the series may
not be convergent on the p-adic unit circle. Namely, when γp(t0) ̸= 0(mod p) one can
evaluate

Λp(t0) =
γ(t)

γ(tp)

∣∣∣
t=t0

= p-adic lim
γps(t0)

γps−1(tp0)
.



CONGRUENCES AND COHOMOLOGY 11

Suppose that tp0 = t0 or, equivalently, t0 = τ(a) is the Teichmüller lift of a ∈ Fp. Then
the above evaluation is compatible with the computation of the limiting value Λp for
the hypersurface 1 − t0g(x) = 0. We conclude that whenever γp(a) ̸= 0 then Λp(τ(a))
is a Frobenius root of the hypersurface 1 − ag(x) = 0 over Fp. This fact demonstrates
the relation between period functions, like γ(t), and local zeta functions of fibres of this
family. Initially observed by Dwork in [12], this phenomenon led to understanding of how
p-adic Frobenius matrices behave in families. We will return to this topic in §5.8.

2.5. Formal expansions of rational functions. Let f(x) =
∑

fux
u ∈ R[x±11 , . . . , x±1n ]

and ∆ ⊂ Rn be its Newton polytope. There are different ways to expand rational
functions h(x)/f(x)m with h(x) ∈ R[x±11 , . . . , x±1n ] and m ≥ 1 into formal Laurent series.
Such expansions will be useful for us in the constructions in the following sections.

Let us describe an expansion procedure with respect to vertices of ∆. Pick a vertex
b ∈ ∆ and assume that fb ∈ R×. Then

h(x)

f(x)m
=

h(x)

fm
b xmb(1 + ℓ(x))m

=
h(x)x−mb

fm
b

∑
s≥0

(
−m

s

)
ℓ(x)s =

∑
v∈Zn

cvx
v.

Here
(−m

s

)
= −m·(−m−1)·...·(−m−(s−1))

s!
= (−1)s

(
s+m−1
m−1

)
are integers.

In this computation ℓ(x) is the Laurent
polynomial ℓ(x) = f−1b x−bf(x) − 1 sup-
ported in the cone C(∆−b). Since ℓ(x) has
no constant term, only finitely many sum-
mands ℓ(x)s will contribute to each mono-
mial xv, and hence the above series is well-
defined.
For later we would like to remark that if

supp(h) ⊂ m∆ then the formal expansion∑
v∈Zn cvx

v is itself supported in the cone
C(∆− b).

Examples of such formal expansions will be given in the next §.

2.6. Gauss congruences. Let f(x), h(x) ∈ Z[x±11 , . . . , x±1n ], ∆ is the Newton polytope
of f(x) and supp(h) ⊆ ∆. We expand the ratio of these functions at one of the vertices
of ∆ as was explained in §2.5:

(6)
h(x)

f(x)
=
∑
v∈Zn

cvx
v.

Theorem 16. (Gauss’ congruences, [4] and [5]) If the only integral points in ∆ are its
vertices then for every odd prime p which does not divide any of the coefficients of f(x)
the coefficients in the expansion (6) satisfy

cv ≡ cv/p (mod pordp(v)), ∀v ∈ Zn.

We will prove this fact in §3.5. These congruences are named after Gauss due to the
basic one-variable example

f(x) =
1

1− ax
=

∞∑
m=0

amxm, a ∈ Z.
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In this case for every prime p ∤ a one has am ≡ am/p(mod pordp(m)). The reader may
notice that this simple Gauss’ congruence follows immediately from Lemma 6.

As our second example, let us expand at 0 the rational function

1

1− x1 − x2

=
∑
m≥0

(x1 + x2)
m =

∑
v∈Z2

≥0

(
v1 + v2

v1

)
xv.

We conclude from Theorem 16 that for any odd prime p one has

(7)

(
v1 + v2

v1

)
≡
(
(v1 + v2)/p

v1/p

)
(mod pmin(ordpv1,ordpv2)).

In fact this rational function is very special: though the modulus pordp(v) in the Gauss
congruence is sharp generically, in the case (7) one actually has congruences modulo twice
higher power of p, that is p2min(ordpv1,ordpv2). This case is an example of a supercongruence
which we will be able to explain only in §5.5.

3. p-adic Cartier operation on differential forms

Let us recall the setup of §2.2. We work with a Laurent polynomial f(x) =
∑

u fux
u ∈

R[x±11 , . . . , x±1n ]. The coefficients fu belong to a characteristic zero ring R. The Newton
polytope of f(x) is denoted by ∆ ⊂ Rn. This polytope is the convex hull of supp(f) =
{u ∈ Zn : fu ̸= 0}.

3.1. Differential forms on the complement of the zero locus of f(x). Algebraic
differential n-forms on the complement of the hypersurface Xf = {x : f(x) = 0} in the

torus Tn = {x : xi ̸= 0 ∀i} are of the shape ω = h(x)
f(x)m

dx1

x1
. . . dxn

xn
with m ≥ 1 and a

Laurent polynomial h ∈ R[x±11 , . . . , x±1n ]. We will now define submodules of our interest
in the R-module of differential forms.

A subset µ ⊆ ∆ will be called open if its complement ∆ \ µ is a union of faces of ∆
of any dimensions. Below are examples of open subsets and their sets of integral points
which we denote by µZ = µ ∩ Zn:

We define the R-modules

Ωf (µ) =

{
(m− 1)!

h(x)

f(x)m

∣∣∣ m ≥ 1, h ∈ R[x±11 , . . . , x±1n ]

supp(h) ⊂ mµ

}
.

The module Ωf (∆) is also denoted by Ωf . We shall also consider

dΩf = R-module generated by xi
∂ν

∂xi

, ν ∈ Ωf , i = 1, . . . , n.

One can easily check that derivations xi
∂
∂xi

preserve modules Ωf (µ). In particular, it

follows that dΩf =
∑n

i=1 xi
∂
∂xi

(Ωf ) is a submodule in Ωf .
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Remark 17. In [3] Batyrev gives the following identification when R = C and f is
∆-regular:

Ωf/dΩf
∼= Hn

dR(Tn \Xf )

Ωf ∋ h(x)

f(x)m
7→ h(x)

f(x)m
dx1

x1

. . .
dxn

xn

dΩf ↔ exact forms

De Rham cohomology of affine algebraic varieties over C has a mixed Hodge structure,
which consists of two filtrations. Batyrev also proves that uder the above identification
the filtration

Ω
(1)
f ⊂ Ω

(2)
f ⊂ . . . with Ω

(k)
f =

{
h(x)

f(x)m
∈ Ωf |m ≤ k

}
descends to the Hodge filtration, and the weight filtration on de Rham cohomology is the
image of

Ωf (µn) ⊃ Ωf (µn−1) ⊃ . . . ⊃ Ωf (µ1),

where µℓ is the complement of the union of all faces of codimension ≥ ℓ.

In what follows we will work with elements of Ωf , which are rational functions. However
it is useful to remember that they correspond to differential forms.

3.2. The Cartier operation. Let us now fix a prime p > 2 and assume that ∩s≥1p
sR =

{0}. Pick a vertex b ∈ ∆ and consider the following operation on formal expansions with
respect to b:

Cp :
h(x)

f(x)m
=
∑
v

cvx
v 7→

∑
v

cpvx
v.

It is unlikely that the resulting series is again an expansion of a rational function. However
it can be approximated by rational functions p-adically. Recall that a Frobenius lift
σ : R → R is a ring endomorphism such that σ(r) − rp ∈ pR for all r ∈ R. For an
endomorphism σ and f(x) =

∑
u fux

u we denote fσ(x) =
∑

u σ(fu)x
u.

Lemma 18. Let σ : R → R be a Frobenius lift. For h(x)
f(x)m

=
∑

cvx
v, the series

∑
cpvx

v

can be approximated p-adically by rational functions with powers of fσ(x) in the denom-
inator. More precisely,

Cp(Ωf ) ⊂ Ω̂fσ = p-adic completion of Ωfσ .

Proof. We reproduce the proof of [5, Prop. 3.3]. It suffices to consider h(x) = (m− 1)!xu

with u ∈ m∆ and show that Cp((m − 1)!xu/f(x)m) ∈ Ω̂fσ . We rewrite 1/f(x)m as
f(x)p⌈m/p⌉−m/f(x)p⌈m/p⌉. Then note that f(x)p = fσ(xp) − pG(x) for some Laurent
polynomial G with coefficients in R and support in p∆. Then we use the p-adically
convergent expansion

xu

f(x)m
=

xuf(x)p⌈m/p⌉−m

(fσ(xp)− pG(x))⌈m/p⌉ =
∑
r≥0

pr
(
⌈m/p⌉+ r − 1

r

)
G(x)r

fσ(xp)r+⌈m/p⌉x
uf(x)p⌈m/p⌉−m,

multiply it with (m− 1)! and apply Cp. We find that

(8) Cp

(
(m− 1)!

xu

f(x)m

)
=
∑
r≥0

pr

r!

(m− 1)!

(⌈m/p⌉ − 1)!
(⌈m/p⌉+ r − 1)!

Qr(x)

fσ(x)r+⌈m/p⌉ ,

where the Qr(x) = Cp(G(x)rxuf(x)p⌈m/p⌉−m) are Laurent polynomials in x1, . . . , xn with
support in (⌈m/p⌉+ r)∆ and coefficients in R. Since the p-adic valuations of pr/r! grow
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infinitely, the right-hand sum is a p-adically convergent sum of elements of Ωfσ , and hence

it belongs to Ω̂fσ . □

From now on it is convenient to assume that R is p-adically complete. The R-linear
operation

(9) Cp : Ω̂f → Ω̂fσ ,
∑

cvx
v 7→

∑
cpvx

v

is called the p-adic Cartier operation. We shall now list its properties.

Theorem 19. (i) The operation Cp : Ω̂f → Ω̂fσ is independent of the choice of vertex
b ∈ ∆ with respect to which the formal expansion in (9) is done.

(ii) For any open set µ ⊆ ∆ the image of Ω̂f (µ) lies in Ω̂fσ(µ).
(iii) For 1 ≤ i ≤ n we have

Cp ◦ xi
∂

∂xi

= p xi
∂

∂xi

◦ Cp.

In particular, Cp(dΩ̂f ) ⊂ dΩ̂fσ and the Cartier operation descends to the homo-
logical quotients

Cp : Ω̂f/dΩ̂f → Ω̂fσ/dΩ̂fσ .

(iv) If R = Zp and σ = id then

(ps − 1) Trace(C s
p | Ω̂f ) = #(Tn \Xf )(Fs

p)

for every s ≥ 1.

Sketch of proof. Part (i) follows from formula (8) which actually describes the Cartier
map without appealing to the formal expansion procedure. Part (ii) can be also deduced
from this formula, because our definition of finite topology in §3.1 implies that when
uinmµ then supp(Qr) ⊂ (⌈m/p⌉ + r)µ. The reader can find a detailed explanation of
this in [5, Prop 3.4]. Part (iii) can be easily checked on formal expansions.

Part (iv) is proved in [5, Thm A.1]. There are obvious relations among the generators
(m − 1)! xu

f(x)m
of the module Ωf . We consider its resolution in which such generators

become free and lift the Cartier action to such free modules in [5, Thm A.5]. These free
modules with the Cartier action turn out to be the exponential modules introduced by
Dwork, and the desired computation of the trace on them is precisely the Dwork trace
formula ([5, Prop A.8]). We remark that the traces here are well defined because modulo
any power of p the image of Cp is of finite rank, and the same property holds true for the
lift of this operation to the exponential module. □

3.3. Formally exact forms. In §3.2 we defined the Cartier operation thorough its action
on formal expansions with respect to a vertex b ∈ ∆. Recall that the procedure of formal
expansion was defined in §2.5. If the coefficient in f(x) at xb is in R×, this operation
embeds Ωf into the R-module

Ωformal = {
∑

u∈C(∆−b)∩Zn

cux
u | cu ∈ R}

of formal Laurent series supported in the cone C(∆ − b). We define the submodule of
formal derivatives as

dΩformal =
n∑

i=1

xi
∂

∂xi

(Ωformal).

Lemma 20. A series ν =
∑

u cux
u ∈ Ωformal is a formal derivative if and only if one of

the following equivalent conditions holds
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(i) cu ∈ g.c.d.(u1, . . . , un)R for each u,
(ii) C s

p (ν) ∈ psΩformal for each s ≥ 1.

Here criterion (i) holds in general over rings of characteristic 0, while for (ii) to be true
one needs R to be a Zp-algebra, so that all other primes are invertible in R. Recall that
we assume R to be p-adically complete, and hence it is a Zp-algebra.

Proof. We leave this proof as an exercise. □

For a subset µ ⊆ ∆ which is open in the finite topology of §3.1, we define the sequence
of square matrices with entries in R indexed by the set µZ = µ ∩ Zn as

βm(µ)u,v∈µZ = coefficient of xmv−u in f(x)m−1.

The matrix βp(µ) will be called the Hasse-Witt matrix corresponding to µ and denoted
by

HW (µ) = βp(µ).

We shall now state the key result of our paper Dwork crystals I. We say that the Hasse–
Witt condition holds for µ if det(HW (µ)) is invertible modulo p. Under our assumption
that R is p-adically complete this is equivalent to being invertible in R, see Remark 11.

Theorem 21. ([5, Thm 4.3]) Assume that ∩s≥1p
sR = {0} and R is p-adically complete.

If the Hasse–Witt condition holds for an open set µ ⊆ ∆, then we have the following
direct sum decomposition of R-modules

Ωf (µ) = Ω
(1)
f (µ)⊕ (dΩformal ∩ Ωf (µ)) ,

where

Ω
(1)
f (µ) =

∑
u∈µZ

R
xu

f(x)

is a free module of rank #µZ. Moreover, we have

Cp(Ωf (µ)) ⊂ Ω
(1)
fσ (µ) + p dΩformal.

It is clear from Lemma 20 that the Cartier operation preserves dΩformal (and even maps
it to p dΩformal). Hence, under the assumptions of Theorem 21, one can define the matrix
of the Cartier operation on the quotient by formal derivatives Ωf (µ)/(dΩformal ∩ Ωf (µ)).
We call this quotient the unit-root crystal. There is a unique matrix Λ(µ) = (λu,v)u,v∈µZ

with entries in R such that

(10) Cp

(
xu

f(x)

)
=
∑
v∈µZ

λu,v
xv

fσ(x)
(mod p dΩformal)

for every u ∈ µZ. In Section 4 we are going to focuse on the computation of Λ(µ). We
remark that this matrix depends on the chosen Frobenius lift σ.
The proof of Theorem 21 will be given in §3.4. It will exploit the p-adic contraction

property of the Cartier operator stated in the following proposition.

Proposition 22. One has

Cp(Ωf (µ)) ⊂ Ω
(1)
fσ (µ) + p Ω̂fσ(µ).

For any u ∈ µZ we have

Cp

(
xu

f(x)

)
=
∑
v∈µZ

HWu,v
xv

fσ(x)
(mod pΩ̂fσ(µ)).
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Proof. We analyze formula (8). pr/r! is divisible by p for all r > 0 and (m−1)!/(⌈m/p⌉−
1)! is divisible by p for m > p. Terms with r = 0 and m ≤ p have in their denominators
fσ(x) in the power r + ⌈m/p⌉ = 1, which proves our first claim. For the second claim
we take r = 0,m = 1 and obtain that Q0(x) = Cp (x

uf(x)p−1), which proves the claimed
formula for the Cartier action modulo p with summation over v ∈ ∆Z. The fact that
HWu,v = 0(mod p) when v /∈ µ follows from (ii) in Theorem 19. □

Note that this proposition shows that under the conditions of Theorem 21 one has

Λ(µ) ≡ HW (µ)(mod p),

where Λ(µ) is the matrix of Cartier action modulo formal derivatives defined in (10).

Corollary 23. Suppose that R = Zp and the Hasse–Witt condition holds for the whole
Newton polytope ∆. Then the eigenvalues of the Cartier matrix Λ = Λ(∆) defined by
the condition (10) with µ = ∆ are Frobenius roots of the toric hypersurface Xf = {x ∈
Tn|f(x) = 0} over the field Fp. Moreover, they are all Frobenius roots of p-adic valuation
less than 1.

Proof. We reproduce the argument from [5, Remark A.2]. By part (iv) of Theorem 19
we have for all s ≥ 1

(ps − 1) Trace(C s
p | Ω̂f ) = #(Tn \Xf )(Fs

p) = (ps − 1)n −#Xf (Fps).

Since Cp is divisible by p on formal derivatives, this yields

Trace(Λs) ≡ Trace(C s
p | Ω̂f ) ≡ 1 + (−1)n+1#Xf (Fps)(mod ps).

Our claim follows from this. □

Problem 24. There are examples when the Hasse–Witt condition holds for a subset
µ ⊊ ∆ but not for the whole ∆. We expect that in this case the eigenvalues of Λ(µ)
will be Frobenius roots as well, however the proof of (iv) in Theorem 19 was given in the
appendix to [5] only in the case of µ = ∆. Can one adopt the Dwork trace formula to
subsets µ open in the topology of §3.1?

If the above question is answered positively, one would obtain a combinatorial structure
on the Frobenius roots in the form of their belonging to open sets µ ⊆ ∆. This is
particularly interesting in the view of Remark 17, where the weight filtration on de Rham
cohomology is given in terms of a sequence of open subsets of ∆.

3.4. The contraction property.

Proposition 25. Let M0,M1,M2, . . . be an infinite sequence of R-modules and ϕi :
Mi−1 → Mi R-linear maps for all i ≥ 1. Suppose that ∩s≥1p

sMi = {0} for all i. For
each i let Ni be a submodule of Mi such that ϕi(Mi−1) ⊂ Ni + pMi for all i ≥ 1. Sup-
pose that Ni ∩ pMi = pNi (equivalently, Mi/Ni is p-torsion free) and the induced maps
ϕi : Ni−1/pNi−1 → Ni/pNi are isomorphisms for all i ≥ 1. Define submodules

Ui = {ω ∈ Mi|ϕi+s ◦ ϕi+s−1 ◦ · · · ◦ ϕi+1(ω) ≡ 0(mod psMi+s) for all s ≥ 1} ⊂ Mi.

Then, for all i,

(i) Mi = Ni + Ui.
(ii) ϕi(Ui−1) ⊂ pUi.
(iii) ϕi(Mi−1) ⊂ Ni + pUi.
(iv) Ni ∩ Ui = {0}.

Proof. The reader may wish to prove this lemma as an exercise or read the proof of [5,
Proposition 4.5]. □
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Proof of Theorem 21. We apply Proposition 25 toMi = Ω̂fσi (µ) and ϕi = Cp for all i ≥ 0.

For Ni we take the Ω
(1)

fσi (µ). The property Ni ∩ pMi = pNi clearly holds. Proposition 22

states that ϕi(Mi) ⊂ Ni + pMi and the matrix of ϕi : Ni−1/pNi−1 → Ni/pNi is given by

HW σi−1
(µ)(mod p). Its determinant is then congruent to det(HW )p

i
(mod p), which is

invertible under the assumption in Theorem 21. So the assumptions of Proposition 25
are satisfied.

By Lemma 20(ii) we find that U0 = Ω̂f (µ)∩dΩformal. Then application of parts (i) and
(iv) of Proposition 25 shows that

Ω̂f (µ) = Ω
(1)
f (µ)⊕ U0

as R-modules. Part (iii) shows that Cp(Ω̂f ) ⊆ Ω
(1)
fσ (µ) + p dΩformal as claimed. □

3.5. Proof of Gauss congruences. We are now ready to prove Theorem 16. Let us
recall its formulation. We assume that f(x) ∈ Z[x±11 , . . . , x±1n ] has a Newton polytope
∆ whose only integral points are vertices. Then for any Laurent polynomial h(x) with
coefficients in Z and supp(h) ⊂ ∆ the coefficients of any formal expansion

h(x)

f(x)
=
∑
v∈Zn

cvx
v

satisfy congruences cv ≡ cv/p(mod pordp(v)) for every prime p which doesn’t divide any of
the coefficients of f(x).
The desired congruence is equivalent to the fact that ω = h(x)/f(x) satisfies

Cpω − ω ∈ p dΩformal,

where dΩformal is the module of formal derivatives introduces in §3.3 . It clearly suffices
to prove this claim for ω = xu/f(x) where u is a vertex of ∆. Consider

µ = ∆ \ union of all faces which do not contain u.

This set is open in the topology of §3.1 and its only integral point is u, that is we have
µZ = {u}. The 1× 1 Hasse–Witt matrix for this µ is

HW (µ) = coefficient of x(p−1)u in f(x)p−1 = fp−1
u ≡ 1(mod p).

Here fu ∈ Z is the coefficients at xu in f(x) and the congruence holds because p ∤ fu by
our assumption on p. Hence the Hasse–Witt condition holds for µ over R = Zp and by
Theorem 21 applied with the trivial Frobenius lift σ = id there exists a unique λ ∈ Zp

such that

(11) Cpω = λω (mod p dΩformal).

By Theorem 19 the Cartier operation, and hence this p-adic number λ, is independent
of the choice of vertex of ∆ at which the formal expansion is done. Hence we can use
expansion at u to determine λ. For this expansion we have c0 = f−1u ̸= 0, and therefore
comparing the constant terms on the two sides of (11) we find that λ = 1 as desired.

4. Periods

In this lecture we will focus on computation of the Cartier action modulo formal deriva-
tives which were introduced in §3.3. The setup is like in §3.1-3.3. We work with a Laurent
polynomial f(x) ∈ R[x±11 , . . . , x±1n ] with coefficients in a characteristic 0 ring R such that
∩s≥1p

sR = {0}. We also assume that R is p-adically complete.
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The Newton polytope of f(x) is denoted by ∆ ⊂ Rn. Let µ ⊆ ∆ be an open set in the
sense of §3.1. Recall that, if the Hasse–Witt condition holds for µ, Theorem 21 implies
existence of a unique matrix Λ(µ) = (λu,v)u,v∈µZ with entries in R such that

(12) Cp

(
xu

f(x)

)
=
∑
v∈µZ

λu,v
xv

fσ(x)
(mod p dΩformal)

for every u ∈ µZ. We are going to exploit divisibility properties of coefficients of elements
of dΩformal to compute the Cartier entries λu,v ∈ R. We first explain a straightforward
approach to this question, which is a version of Nick Katz’s Internal reconstruction of unit-
root F-crystals via expansion coefficients in [?]. Later we will move to more sophisticated
methods using period maps.

4.1. p-adic interpolation of Cartier matrices via expansion coefficients. In Sec-
tion 2.5 we explained the procedure of formal expansion of rational functions with respect
to a vertex b of ∆. We have expansions

ω =
∑
u∈Zn

cu(ω)x
u, ω ∈ Ωf .

Proposition 26. For any vector w ∈ Zn one can consider the sequence of vectors As ∈
R#µZ, s ≥ 1 with entries

(As)u∈µZ = cpsw

(
xu

f(x)

)
.

Then

As ≡ Λ(µ)σ(As−1) (mod ps).

Proof. Let us take the expansion coefficient at ps−1w on both sides of (12). By Lemma 20
this coefficient is divisible by ps−1 on dΩformal, and therefore we obtain

cpsw

(
xu

f(x)

)
≡
∑
v∈µZ

λu,v cps−1w

(
xv

fσ(x)

)
(mod ps).

This congruence is precisely our claim. □

Usually one can determine Λ(µ) from congruences as in Proposition 26 taken for several
exponent vectors w.

4.2. Period maps.

Definition 27. A period map with values in an R-module S is a homomorphism of R-
modules P : Ωf → S which vanishes on dΩf . Values of a period map are called periods.

The classical notion of periods for algebraic varieties was introduced by Alexander
Grothendieck. Since elements of dΩf correspond to exact differential n-forms on Tn \Xf ,
there are classical period maps of integration along topological n-cycles Y ⊂ (Tn\Xf )(C):

PY : ω →
∫
Y

ω.

Here we identify elements of Ωf with differential forms on the complement Tn \Xf as was

explained in §3.1, that is h(x)
f(x)m

7→ h(x)
f(x)m

x1

x1
. . . xn

xn
. Elements of dΩf correspond to exact

forms, and therefore PY (dΩf ) = 0. In general such maps take values in C, or in analytic
functions in case of families of hypersurfaces, and we do not expect them to behave well
with respect to the Cartier operation. Our goal will be to construct Cartier-invariant
period maps. We start with an example.
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Example 28. Take f(x) = 1 − tg(x) with g(x) ∈ Z[x±11 , . . . , x±1n ]. Assume that 0 ∈ ∆
(not necessarily a vertex or an internal point). We can work with any ring R such that
Z[t] ⊂ R ⊂ ZpJtK. Consider the formal expansion of rational functions at 0:

h(x)

f(x)m
= h(x)

∑
s≥0

(
s+m− 1

m− 1

)
tsg(x)s =

∑
u∈Zn

cu(t)x
u.

This expansion is convergent t-adically, and the coefficients cu(t) belong to the ring of
formal power series S = ZpJtK. Then

P0 : ω 7→ c0(ω)

is a period map with values in ZpJtK which

• vanishes on dΩformal,
• is Cp-invariant.

The first property is clear because the constant terms of logarithmic derivatives xi
∂
∂xi

ν are
zero. The second property follows from the fact that the Cartier operation acts on formal
expansions at 0 is the same way as on expansions at vertices of the Newton polytope.
That is, we have Cp :

∑
u cu(t)x

u 7→
∑

u cpu(t)x
u. The reader who is not convinced may

find a discussion of this later point in [6, §2].

We note that the period map in the above example is of the kind of earlier mentioned
integration maps. This is integration along the n-cycle Y = S1×· · ·×S1, if we divide the
result by (2πi)n, or the residue map at 0. One can write this fact as P0 = 1

(2πi)n
PS1×···×S1 .

Now we can revisit §2.4. We prove the following fact.

Theorem 29. Take f(x) = 1 − tg(x) with g(x) ∈ Z[x±11 , . . . , x±1n ]. Assume that the
Newton polytope ∆ has only one interior integral point. Assume further that this interior
point is the origin, that is ∆◦ ∩ Zn = {0}. For i ≥ 0 we denote by ci ∈ Z the constant
term of g(x)i. Consider the generating series

γ(t) =
∞∑
i=0

cit
i =

1

(2πi)n

∮
. . .

∮
1

1− tg(x)

dx1

x1

. . .
dxn

xn

and denote its truncations by γm(t) =
∑m−1

i=0 cit
i. Then for any odd prime number p one

has
γ(t)

γ(tp)
∈ Z[t, γp(t)−1] .̂

Proof. Consider µ = ∆◦. The respective Hasse-Witt matrix (of rank 1 in this case)
is given by HW (t) = constant term of (1 − tg(x))p−1 =

∑p−1
i=0 (−1)i

(
p−1
i

)
cit

i. Since
HW (t) ≡ γp(t)(mod p), it follows that HW (t) is invertible in the ring R = Z[t, γp(t)−1] .̂
Let σ : R → R be the Frobenius lift σ(r(t)) = r(tp). By Theorem 21 there exists λ ∈ R
such that

(13) Cp
1

f(x)
= λ

1

fσ(x)
(mod p dΩformal).

We apply to this congruence the period map P0 defined in Example 28. Note that
P0(1/f(x)) = γ(t). Using the two properties of the map P0 we get

γ(t) = λ γ(tp),

from which it follows that λ = γ(t)/γ(tp). Since λ ∈ R, this proves our claim. □

Our next goal will be to prove an explicit p-adic approximation to γ(t)/γ(tp) by ratios
of truncations γps(t)/γps−1(tp). For that we should evidence that truncations are periods.
In fact, they will be periods modulo ps which we shall now introduce.
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4.3. Periods modulo ps.

Definition 30. Let S be an R-module such that ∩sp
sS = {0}. An R-linear map ρ :

Ωf → S such that ρ(dΩf ) ⊂ psS is called a period map modulo ps.

Example 31. Let ω 7→
∑

u∈Zn cu(ω)x
u be either one of the procedures of formal expansion

introduced earlier. It can be either an expansion at a vertex b ∈ ∆ as in §2.5 or an
expansion at 0 ∈ ∆ as in Example 28. We take S = R and S = ZpJtK in these cases
respectively. Then for any exponent vector w ∈ Zn the map

ω 7→ cpsw(ω)

is a period map modulo ps with the following properties:

• cpsw (dΩformal) ⊂ psS,
• cpsw = cps−1w ◦ Cp.

Example 32. Let ω 7→
∑

u∈Zn cu(ω)x
u be either one of the procedures of formal expansion

introduced earlier with coefficients in S = R or S = ZpJtK ⊃ R. Let ℓ(x) ∈ S[x±11 , . . . , x±1n ]
be a Laurent polynomial. Then

ρs,ℓ : ω 7→ c0
(
ℓ(x)p

s

ω
)

is a period map modulo ps with the following properties:

• ρs,ℓ (dΩformal) ⊂ psS,
• ρs,ℓ ≡ ρs−1,ℓσ ◦ Cp (mod ps).

The reason that the first property holds is that

ℓ(x)p
s

xi
∂

∂xi

ν ≡ xi
∂

∂xi

(
ℓ(x)p

s

ν
)
(mod ps).

We than take c0 and obtain that ρs,ℓ(xi
∂
∂xi

ν) ∈ psS. Proof of the second property is left
an an exercise for the reader.

The fact that expansion coefficients are period maps (Example 31) was actually used
in the proof of Proposition 26. Example 32 provides a generalisation, which we shall now
use to prove Dwork’s congruences announced in §2.4.

Exercise 33. Prove Theorem 15. For that, check that γps(t) = (ρs,1 − ρs,tg(x))(1/f(x))
and apply these period maps to the identity (13).

Now we are in a position to prove the following generalisation of Theorem 10.

Theorem 34. Let µ ⊆ ∆ be an open set. We consider the sequence of square matrices

βm(µ)u,v∈µZ = coefficient of xmv−u in f(x)m−1.

Suppose that the Hasse–Witt condition holds for µ), that is matrix βp(µ) = HW (µ)
is invertible, and let Λ(µ) be the Cartier matrix (12) on the quotient of Ωf (µ) by the
submodule of formal derivatives. Then for every s ≥ 1 we have

βmps(µ) ≡ Λ(µ)σ(βmps−1(µ)) (mod ps).

In particular, when m = 1,

Λ(µ) ≡ βps(µ) ◦ σ(βps−1(µ))−1 (mod ps).

Proof. Denote ωu = xu/f(x) for u ∈ µZ. Matrix Λ(µ) = (λu,v) satisfies

Cp(ωu) ≡
∑
v∈µZ

λu,vωv (mod pdΩformal).
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For w ∈ µZ let ℓ(x) = f(x)m/xmw. We apply to the above congruence the period map
ρs−1,ℓσ defined in Example 32. Using the two properties of this period map we get

ρs,ℓ(ωu) ≡
∑
v∈µZ

λu,v ρs−1,ℓσ(ω
σ
v) (mod ps).

It remains to notice that

ρs,ℓ(ωu) = c0
(
f(x)p

sm−1xu−psmw
)
= βpsm(µ)u,w.

□

5. Beyond the unit root part

So far we developed a method which gives those Frobenius roots which are p-adic units.
In the last lecture we will introduce higher Hasse-Witt conditions and explain a far going
generalization of the previous results. These methods will allow to construct Cartier
matrices on (p-adic completions of) the whole de Rham cohomology modules. We will
also discuss applications and related phenomena of supercongruences.

The setup is like in §3.1-3.2. We work with a Laurent polynomial f(x) =
∑

u fux
u ∈

R[x±11 , . . . , x±1n ] with coefficients in a characteristic 0 ring R such that ∩s≥1p
sR = {0}. We

also assume that R is p-adically complete and equipped with a Frobenius lift σ : R → R.

5.1. Higher formal derivatives. In §2.5 and §3.3 we defined an embedding of Ωf into
the space of formal power series

Ωformal = {
∑

u∈C(∆−b)∩Zn

aux
u | au ∈ R}

by the procedure of formal expansion of rational functions at a vertex b ∈ ∆. It is
assumed that fb ∈ R×.

Definition 35. The submodule of k-th formal derivatives

dkΩformal ⊂ Ωformal

is the R-module generated by elements of the form θi1 · · · θikν, where θi = xi
∂
∂xi

, ν ∈ Ωformal

and 1 ≤ ij ≤ n for each index j = 1, . . . , k.

We have the following generalisation of Lemma 20:

Lemma 36. A series ν =
∑

u aux
u ∈ Ωformal is a kth formal derivative if and only if one

of the following equivalent conditions holds

(i) au ∈ g.c.d.(u1, . . . , un)
kR for each u,

(ii) C s
p (ν) ∈ pksΩformal for each s ≥ 1.

Proof. The proof is left as an exercise. □

5.2. Higher Hasse–Witt conditions. Let µ ⊂ ∆ be an open set in the finite topology
introduced in §3.1. There is a natural filtration on Ωf (µ) by the order of pole along the
zero locus of f(x):

Ω
(k)
f (µ) = SpanR

(
(k − 1)!

xu

f(x)k

)
u∈(kµ)Z

, k ≥ 1.

On de Rham cohomology this filtration corresponds to the Hodge filtration, see Re-
mark 17. The main result of [7] describes a splitting filtration in arithmetic terms:
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Theorem 37. Let R be p-adically complete, µ ⊆ ∆ be an open set and 1 ≤ k < p. If
the kth Hasse–Witt condition holds for µ, then there is a direct sum decomposition of
R-modules

Ω̂f (µ) = Ω
(k)
f (µ)⊕Fk,

where

Fk = Ω̂f (µ) ∩ dkΩformal = {ω ∈ Ω̂f (µ) : C s
p (ω) ∈ pksΩ̂fσs (µ) ∀s ≥ 1}

is the submodule of kth formal derivatives. Secondly, one has

Cp(Ωf (µ)) ⊂ Ω
(k)
fσ (µ) + pkFσ

k .

This theorem will be proved in the next section. Let us recall formula (8) which

describes explicitly the Cartier action Cp : Ω̂f → Ω̂fσ :

(14) Cp

(
(m− 1)!

xu

f(x)m

)
=
∑
r≥0

pr

r!

(m− 1)!

(⌈m/p⌉ − 1)!
(⌈m/p⌉+ r − 1)!

Qr(x)

fσ(x)r+⌈m/p⌉ ,

where the Qr(x) = Cp(G(x)rxuf(x)p⌈m/p⌉−m) are Laurent polynomials in x1, . . . , xn with
support in (⌈m/p⌉+r)∆ and coefficients in R. Polynomial G(x) was defined as (fσ(xp)−
f(x)p)/p, it is supported in p∆ and has coefficients in R. We observe that formula (14)
implies that

Cp(Ωf (µ)) ⊂ Ω
(k)
fσ (µ) + pkΩ̂fσ(µ).

The kth Hasse-Witt condition means that the image of the Cartier operator modulo pk

has maximal possible rank. We shall now explain how to verify this condition in practice.

Definition 38. Assume that 1 ≤ k < p. Denote

F (k)(x) = f(x)p−k
k−1∑
r=0

(fσ(xp)− f(x)p)r fσ(xp)k−1−r.

The k-th Hasse-Witt matrix HW (k) is the matrix indexed by the set (k∆)Z = (k∆) ∩ Zn

with entries given by

HW (k)
u,v = coefficient of xpv−u in F (k)(x).

For an open set µ ⊆ ∆ we denote by HW (k)(µ) the submatrix indexed by (kµ)Z.

Exercise 39. Check that

HW (k)
u,v ≡ coefficient of xpv−u in

fσ(xp)k

f(x)k
(mod pk),

where on the right one has to consider the Laurent series expansion in order to determine
the coefficient.

Lemma 40. Let µ ⊂ ∆ be an open set.

(i) For u ∈ (kµ)Z one has

Cp

(
xu

f(x)k

)
≡

∑
v∈(kµ)Z

HW (k)
u,v

xv

fσ(x)k
(mod pk Ω̂fσ(µ))

(ii) Let us denote mℓ = #(ℓµ)Z for ℓ ≥ 1 and

L(k, µ) =
k∑

ℓ=1

(ℓ− 1)(mℓ −mℓ−1).

Then det
(
HW (k)(µ)

)
∈ pL(k,µ)R.
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Proof. (i) follows from formula (14). We leave the check as an exercise. For (ii) we choose

a basis ω1, . . . , ωmk
in the free R-module Ω

(k)
f (µ) so that ω1, . . . , ωmℓ

is a basis in Ω
(ℓ)
f (µ)

for every ℓ ≤ k. This is called an extended basis. Under our standard assumption that
there is a vertex b in ∆ such that the coefficient of f at xb is in R×, one may check that

xu

f(x)ℓ
,u ∈ (ℓµ)Z \ ((ℓ− 1)µ)Z, 1 ≤ ℓ ≤ k

is an extended basis in Ω
(k)
f (µ).

We write the action of the Cartier operator on Ω
(k)
f (µ) modulo pk with respect to an

extended basis. That is, we choose some Cij ∈ R such that Cp(ωi) =
∑

j Cijω
σ
j (mod pk).

Formula (14) shows that Cp maps Ω
(k)
f (µ) to

∑k
l=1 p

l−1Ω
(l)
fσ(µ), and hence Cij is divisible

by pl−1 when ml−1 < j ≤ mℓ. We conclude that det(C) ∈ pL(k,µ)R.

Let ω̃u = xu/f(x)k, u ∈ (kµ)Z be the monomial basis in Ω
(k)
f (µ). From part (i) we know

that HW (k)(µ) describes the action of the Cartier operator modulo pk in this monomial
basis. Let A be the transition matrix, that is ω̃u =

∑
iAu,iωi. Then

C ≡ A−1 ·HW (k) · Aσ (mod pk).

It follows that det(A)−1 det(HW (k)(µ)) det(A)σ ∈ pL(k,µ)R. Since R is p-adically com-
plete, invertibility det(A) ∈ R× implies that det(A)σ ∈ R×. It follows that

det(HW (k)(µ)) ∈ pL(k,µ)R.

□

Definition 41. We say that the kth Hasse-Witt condition holds for an open subset µ ⊆ ∆
when

(15) det(HW (ℓ)(µ)) ∈ pL(ℓ,µ)R×, 1 ≤ ℓ ≤ k.

In [7, §5] it is explained that this condition means maximality of the Cartier image
modulo pk.

5.3. Proof of the main theorem. In this section we will prove Theorem 37. The
proof was given in [7, §4-5] in a more general situation of Dwork crystals. Here we will
give a somewhat simplified version, which works for modules Ωf (µ) and exploits our key
contraction principle stated in Proposition 25.

To shorten the notation we shall drop µ from Ωf (µ) and L(ℓ, µ) for the duration of

this proof. Similarly, Ω
(k)
f will stand for Ω

(k)
f (µ). We thus need to show that the kth

Hasse-Witt condition implies that Ω̂f = Ω
(k)
f ⊕Fk and Cp(Ω̂f ) ⊂ Ω

(k)
fσ + pkFσ

k , where Fσ
k

is the submodule of kth formal derivatives in Ω̂fσ .
We will use induction on k. The case k = 1 is already handled in Theorem 21. Suppose

now that k > 1 and

(16) Ω̂f
∼= Ω

(l)
f ⊕Fl for all l < k.

We will show that

Fk−1 ∼= (Ω
(k)
f ∩ Fk−1)⊕Fk,

and hence

Ω̂f
∼= Ω

(k−1)
f ⊕ (Ω

(k)
f ∩ Fk−1)⊕Fk

∼= Ω
(k)
f ⊕Fk.

The last equality is a consequence of (16) with l = k−1 restricted to Ω
(k)
f . Our convention

is that F0 = Ω̂f .
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We would like to apply Proposition 25 with

Mi = Fσi

k−1, ϕi = p1−kCp and Ni = Mi ∩ Ω
(k)

fσi .

We shall check that the assumptions of Proposition 25 are satisfied. It is clear from
the definition of modules Fℓ that Cp(Fℓ) ⊂ pℓFσ

ℓ for any ℓ. Therefore ϕi maps Mi−1 to

Mi. Let ω ∈ Fk−1. We know that Cp(ω) ∈ pk−1Fσ
k−1. Since Cp maps Ω̂f modulo pk

to Ω
(k)
fσ we can conclude that Cp(ω) = pk−1ω1 + pkω2 with ω1 ∈ Fσ

k−1 ∩ Ω
(k)
fσ , ω2 ∈ Ω̂fσ .

Using (16) for fσ we write ω2 = ω′2 + ν2 with ν2 ∈ Fσ
k−1 and ω′2 ∈ Ω

(k−1)
fσ ⊂ Ω

(k)
fσ . We get

Cp(ω) = pk−1ν1+pkν2 with ν1 = ω1+pω′2 ∈ Ω
(k)
fσ . Note that ν1 = p1−kCp(ω)−pν2 ∈ Fσ

k−1.
We thus proved that

Cp(Fk−1) ⊂ pk−1(Fσ
k−1 ∩ Ω

(k)
fσ ) + pkFσ

k−1.

Replacing f with fσi
and dividing by pk−1, we then obtain

(17) ϕi(Mi−1) ⊂ Ni + pMi.

Next, we need to check that

(18) Ni ∩ pMi = pNi.

We will give the argument in the case i = 0; other cases will follow by replacing f with

fσi
. Recall that N0 ∩ pM0 = Fk−1 ∩Ω

(k)
f ∩ pFk−1 = Ω

(k)
f ∩ pFk−1. One easily checks that

this equals p(Ω
(k)
f ∩ Fk−1) = pN0.

Note that by (17) and (18) we have induced maps

(19) ϕi : Ni−1/pNi−1 → Ni/pNi.

To apply Proposition 25, it remains to check that (19) are isomorphisms. We shall restrict
to the case i = 1, the other cases being similar.

Let us denote mℓ = #(ℓµ)Z. Let ω1, . . . , ωmk
be a basis of Ω

(k)
f such that ω1, . . . , ωmℓ

is

a basis in Ω
(ℓ)
f (µ) for every ℓ ≤ k. This is called an extended basis. Its existence is a mild

assumption (see [7, §5]). For example, if there is a vertex b in ∆ such that the coefficient
of f at xb is in R×, then an extended basis exists (the reader can find in the proof of
Lemma 40).

For l = k − 1 down to l = 1 and r = mℓ + 1, . . . ,mℓ+1 we choose ηr ∈ Ω
(l)
f such that

ωr − ηr ∈ Fl. This is possible because of (16). Then redefine ωr := ωr − ηr. We now have

a new extended basis of Ω
(k)
f such that

ωr ∈ Fl ∩ Ω
(l+1)
f whenever mℓ < r ≤ mℓ+1.

In Ω
(k)
fσ we can choose a similar basis ωσ

i , i = 1, . . . ,mk.

Let C = (ci,j) be a matrix of Cp modulo pk in these respective bases. That is, we
choose some λij ∈ R such that

Cp(ωi) =

mk∑
j=1

cij ω
σ
j (mod pkΩ̂fσ)

for every 1 ≤ i ≤ mk. Since Cp is divisible by pℓ on Fℓ, we have p
l|cij whenmℓ < i ≤ mℓ+1.

Exercise: check that decompositions (16) imply that cij ≡ 0(mod pk) when j < mℓ ≤ i
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for some ℓ. Thus w.l.o.g. we may assume that C is a block-upper-triangular matrix; we
will denote its diagonal blocks by pℓCℓ, 0 ≤ ℓ ≤ k − 1:

C =


C0 ∗ ∗ . . .
0 pC1 p∗ . . .

0 0 . . . pk−1Ck−1

 .

Note that Ck−1(mod p) is the matrix of the map

p1−kCp : Fk−1 ∩ Ω
(k)
f (mod p) → Fσ

k−1 ∩ Ω
(k)
fσ (mod p).

in the bases ωi, ω
σ
i ,mk−1 < i ≤ mk. This map is precisely (19) for i = 1. We can now

conclude that this map is invertible if and only if

det(Ck−1) ∈ R×.

Recall that HW (k) is the matrix of Cp(mod pk) in the monomial basis ω̃u = xu/f(x)k,
u ∈ (kµ)Z (see Lemma 40(i)). Let A be the transition matrix, that is ω̃u =

∑
iAu,iωi.

Then

(20) C ≡ A−1 ·HW (k) · Aσ (mod pk).

It follows that det(A)−1 det(HW (k)(µ)) det(A)σ ∈ pL(k,σ)R. Since R is p-adically com-
plete, invertibility det(A) ∈ R× implies that det(A)σ ∈ R×. It follows that det(HW (k)(µ)) ∈
pL(k,σ)R.

Let δ be the diagonal matrix of size mk whose j-th entry equals pl−1 where mℓ−1 <
j ≤ mℓ. Since the j-th row in (20) is divisible by pl, we can multiply (20) by the matrix
δ−1 on the left retaining a congruence mod p between matrices with entries in R. Note
that det δ = pL(k). We conclude that

k−1∏
ℓ=0

det(Cℓ) ≡ p−L(k) det(A)−1 det(HW (k)) det(Aσ) (mod p).

The Hasse–Witt condition yields p−L(k) det(HW (k)) ∈ R×. Since R is p-adically complete,
det(A) ∈ R× implies that det(A)σ ∈ R×. Hence det(Ck−1) ∈ R×, which concludes the
proof of invertibility of (19) when i = 1. For general i we use the same argument with f

substituted by fσi−1
.

We checked that the assumptions of Proposition 25 are satisfied. From parts (i) and
(iv) of that proposition we conclude that M0 = N0 ⊕ U0, where

U0 = {ω ∈ M0|ϕs ◦ . . . ◦ ϕ1(ω) ∈ psMs for all s ≥ 1}
= {ω ∈ Fk−1|C s

p (ω) ∈ pksFσs

k−1 for all s ≥ 1} = Fk.

We proved that Fk−1 ∼= (Fk−1 ∩ Ω
(k)
f ) ⊕ Fk. Using the argument from the beginning of

the induction step, the first claim of our theorem follows.
Our second claim follows from (15) and the decomposition that we already proved:

Cp (Ωf ) ⊂ Ω
(k)
fσ + pkΩ̂fσ = Ω

(k)
fσ + pk

(
Ω

(k)
fσ + Fσ

k

)
= Ω

(k)
fσ + pkFσ

k .

This finishes the proof of the theorem.
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5.4. p-adic interpolation of higher Cartier matrices. In §4.1 we explained interpo-
lation of Cartier matrices on the unit-root quotients Ωf (µ)/F1 via expansion coefficients,
the principle which goes back to Nick Katz. This can be done for the quotients by higher

derivatives in a similar vein. Let ω1, . . . , ω#(kµ)Z be a basis in the free R-module Ω
(k)
f (µ).

If the kth Hasse–Witt condition holds, then by Theorem 37 there is a unique matrix
Λ = (λij) with entries in R such that

(21) Cp(ωi) ≡
#(kµ)Z∑
j=1

λij ω
σ
j (mod pkFσ

k ).

Consider any procedure of formal expansion ω =
∑

u∈Zn cu(ω)x
u for ω ∈ Ωf . This can be

expansion with respect to a vertex b of ∆ as in Section 2.5, or expansion at the origin 0
as in Example 28. For any vector u ∈ Zn, taking expansion coefficients at ps−1u in (21)
yields

cpsu(ωi) ≡
#(kµ)Z∑
j=1

λij cps−1u(ω
σ
j ) (mod psk), s ≥ 1.

In practice one can often solve systems of such p-adic congruences and obtain explicit
expressions for Λ in terms of expansion coefficients. In the following sections we will
overview several applications in which explicit information about entries of Λ appeared
to be useful.

5.5. Supercongruences and excellent Frobenius lifts. Let us start with a simple
example, in which one can explicitly compute the action of Cp modulo F2 using the
method of the previous section. This example will help us to illustrate the phenomenon
in the name of this section.

Example 42. Let f(x) = (1− x1)(1− x2)− tx1x2 and

R = p-adic completion of Z[t, 1/t].
Frobenius lifts σ : R → R are given by t 7→ tσ ∈ tp + pR. In [7, §6] we show that for any
Frobenius lift one has

(22)

Cp

(
1

f(x)

)
=

1

fσ(x)
(mod pFσ

1 ),

Cp

(
1

f(x)

)
=

1

fσ(x)
+ log

(
tσ

tp

)(
θ

1

f(x)

)σ

(mod p2Fσ
2 ),

where θ = t d
dt
. We see that in the special case tσ = tp one has

(23) Cp

(
1

f(x)

)
=

1

fσ(x)
(mod pFσ

2 ).

For this special Frobenius lift 1/f(x) becomes an ‘eigenvector’ of the Cartier operator
modulo F2, while in general it is only an ’eigenvector’ modulo F1. Existence of such lifts
was observed by Bernard Dwork who called them excellent Frobenius lifts.

In the above example, let us expand 1/f at the vertex 0 ∈ ∆:

1

f(x)
=
∑
m≥0

(tx1x2)
m

(1− x1)m+1(1− x2)m+1
=

∑
m,u1,u2≥0

tm
(
u1

m

)(
u2

m

)
xu1
1 xu2

2

=
∑

u∈Z2
≥0

cu(t)x
u, cu(t) =

min(u1,u2)∑
m=0

(
u1

m

)(
u2

m

)
tm
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The first line in (22) means that for any Frobenius lift σ : R → R

cu1ps,u2ps(t) ≡ cu1ps−1,u2ps−1(tσ) (mod ps), s ≥ 1.

However for the excellent Frobenius lift tσ = tp we have (23) and the modulus improves:

cu1ps,u2ps(t) ≡ cu1ps−1,u2ps−1(tp) (mod p2s), s ≥ 1.

This is an example of supercongruences.
Note that values t = ±1 are fixed by our excellent Frobenius lift t 7→ tp. For example,

for t = 1 we have supercongruences for the expansion coefficients of

1

1− x1 − x2

=
∑

u∈Z2
≥0

(
u1 + u2

u1

)
xu.

Namely, the binomial coefficients satisfy(
(u1 + u2)p

s

u1ps

)
≡
(
(u1 + u2)p

s−1

u1ps−1

)
(mod p2s).

This supercongruence is ‘twice stronger’ than the Gauss’ congruence in §2.6.

5.6. Calabi–Yau families. In [7, §7] we describe excellent Frobenius lifts for completely
symmetric Calabi-Yau families. A lattice polytope ∆ ⊂ Rn is called reflexive if it is
of maximal dimension and every codimension 1 face of ∆ can be given by an equation∑n

i=1 aiui = 1 with all ai ∈ Z. This condition implies that ∆◦ ∩ Zn = {0} and every
u ∈ Zn lies on an integral dilation of the Euclidean boundary of ∆.

Definition 43. 4A Calabi–Yau family is given by

1− tg(x) = 0

with g(x) ∈ Z[x±11 , . . . , x±1n ] whose Newton polytope ∆ ⊂ Rn is reflexive. A Calabi–Yau
family is called completely symmetric if the only non-zero integral points in the Newton
polytope are vertices and there is a finite subgroup G ⊂ GLn(Z) which acts transitively on
the set of vertices and preserves g(x).

Here are some examples. The reader will find their detailed disussion in [7, §7]:
• simplicial family

g(x) = x1 + . . .+ xn +
1

x1 · · ·xn

• hyperoctahedral family

g(x) = x1 +
1

x1

+ . . .+ xn +
1

xn

• hypercubic family

g(x) =

(
x1 +

1

x1

)
· · ·
(
xn +

1

xn

)
4Reflexivity of the Newton polytope is closely connected to the Calabi–Yau property . Namely, Victor

Batyrev showed in [3] that when R = C, f ∈ C[x±1
1 , . . . , x±1

n ] has a reflexive Newton polytope ∆ and
satisfies a certain condition called ∆-regularity, then the toric hypersurface f(x) = 0 can be compactified
to a Calabi–Yau variety in a certain projective space P∆ constructed using the Newton polytope only.

A Calabi-Yau variety of dimension d has a nowhere vanishing holomorphic differential d-form which
is unique up to multiplication by a constant. In our setup this form on the hypersurface of zeroes Xf is
represented by the element 1/f(x) ∈ Ωf .
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• An-family

g(x) = (1 + x1 + . . .+ xn)

(
1 +

1

x1

+ . . .+
1

xn

)
One takes f(x) = 1− tg(x). For R we take a p-adically closed subring of ZpJtK. More

precisely,

(24) R = p-adic completion of Z[t, 1/hw1(t), 1/hw2(t)],

where hw1(t), hw2(t) ∈ Z[t] are the so-called first and second Hasse–Witt polynomials.
These polynomials are defined in [7, §7] for a given Frobenius lift σ, but change of the
lift results in a polynomial which equals to the previous one modulo p. In the view of (ii)
in Exercise 14 the ring in (24) is defined independently of the choice of σ.

Let Γ ⊆ Zn be the lattice spanned by the vertices of ∆. For completely symmetric
Calabi–Yau families for which Γ = Zn one can show that

Ωf (∆
◦)G/F2

∼= R
1

f(x)
+R

(
1

f 2(x)

)
.5

Here Ωf (∆
◦)G means the submodule of G-invariant elements in Ωf (∆

◦). Another basis
in this rank 2 R-module is given by 1/f and θ(1/f), where θ = t d

dt
. Therefore for any

Frobenius lift σ : R → R one has

Cp

(
1

f(x)

)
= λ0(t)

1

fσ(x)
+ λ1(t)

(
θ

1

f(x)

)σ

(mod p2Fσ
2 ).

Here elements λ0, λ1 ∈ R depend on σ and can be determined explicitly in terms of the
Picard–Fuchs differential equation satisfied by the period function

F0(t) =
1

(2πi)n

∮
· · ·
∮

1

1− tg(x)

dx1

x1

· · · dxn

xn

=
∞∑

m=0

cmt
m, cm = constant term of g(x)m.

Earlier we denoted the series F0(t) by γ(t), but a change of notation at this point is
useful. Denote L2 = θ2 + A(t)θ + B(t) where A,B ∈ R are the elements determined by
the condition L2(1/f) ∈ F2. Note that F0(t) = P0(1/f(x)) where P0 : Ωf → ZpJtK is the
period map of Example 28. Since this period map commutes with the derivation θ, series
F0(t) = P0(1/f) is annihilated by the differential operator L2. There is unique second
solution to L2y = 0 which has the form

log(t)F0(t) + F1(t), F1(t) ∈ tQ[[t]].6

In [7, §7] we compute λ0 and λ1 in terms of the series F0(t), F1(t) and the Frobenius lift
σ. We find that there is a unique excellent lift σ0. It can be conveniently described in

5If Γ ⊊ Zn then one also needs to restrict to rational functions whose numerators are supported in Γ.
Such modules are examples of more sophisticated Dwork crystals considered in [7]. The theory of this
section works for them along the same lines, but we prefer to avoid these cases here for simplicity. The
reader may check that Γ = Zn for simplicial, hyperoctahedral and An families, while for the hypercubic
family one has [Zn : Γ] = 2n−1.

6In the Appendix to [7] it is shown that the series F1(t), and hence also A(t), B(t) ∈ R do not
depend on the prime p. There is a Picard–Fuchs differential operator, which is an operator of minimal
degree L ∈ Q(t)[θ] such that L(1/f(x)) ∈ dΩf . This L annihilates the series F0(t) (obviously) and
log(t)F0(t) + F1(t) (much less obviously), and therefore L2 is a right factor of L in the bigger ring
Q[[t]][θ]. Operator L describes the Gauss-Manin connection on the de Rham module Ωf (∆

◦)G/dΩf . It
will appear in §5.8.
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terms of the so-called canonical coordinate

q(t) = exp

(
log(t)F0(t) + F1(t)

F0(t)

)
= t exp

(
F1(t)

F0(t)

)
∈ t+ t2Q[[t]].

Theorem 44. [7, Theorem 7.3] Consider a completely symmetric Calabi–Yau family

1− tg(x) = 0

as in Definition 43. Assume that p ∤ #G × [Zn : Γ]× c, where G is the symmetry group of
the family, Γ is the lattice generated by the vertices of ∆ and c ∈ Z is the vertex coefficient
of g(x). Then

(i) the canonical coordinate is p-integral: q(t) ∈ t+ t2ZpJtK;
(ii) there is a unique Frobenius lift σ0 : ZpJtK → ZpJtK such that

Cp

(
1

f(x)

)
= λ(t)

1

fσ0(x)
(mod p2Fσ0

2 ) with λ(t) =
F (t)

F (tσ0)
;

(iii) the excellent lift σ0 is given in terms of the canonical coordinate by

q 7→ cp−1qp;

moreover, one has σ0(R) ⊂ R where R is the ring defined in (24).

The inverse series t = t(q) ∈ q + q2Q[[q]] is called the mirror map. One particular
consequence of this theorem is that the series tσ0 = σ0(t) belongs to the ring (24). This
ring is contained in the field of p-adic analytic elements

(25) Ep = p-adic completion of Q(t).

It is often the case for Calabi-Yau families in n ≤ 3 dimensions that t(q) is an elliptic
modular function (see [7, §8]). In [15, §7] Dwork proved that for the elliptic j-invariant,
the series j(qp) is a p-adic analytic function of j(q). Particularly, he shows it can be
approximated by rational functions of j whose denominators are powers of a first Hasse–
Witt polynomial which we denote by hw(1)(t) in our setup. This is a polynomial whose
roots (mod p) are precisely the supersingular j-invariants. Dwork attributes this theorem
to Deligne. For n ≥ 4 we do not expect any modularity of t(q). Still, our result shows
that t(qp) is a p-adic analytic function of t(q), though in general the second Hasse–Witt
polynomial also occurs in denominators of interpolating rational functions. We shall look
at fixed points of these p-adic analytic functions.

Exercise 45. In the setup of Theorem 44, prove that for every a ∈ Fp such that hw
(1)(a) ̸=

0 and hw(2)(a) ̸= 0 there is a unique ã ∈ Zp, ã ≡ a(mod p) such that ã is a fixed point of
the excellent Frobenius lift:

tσ0(ã) = ã.

Problem 46. Compute fixed points of the excellent Frobenius lift for the specific com-
pletely symmetric Calabi–Yau families given earlier in this section.

This problem is of interest because we expect supercongruences to hold at these points
as we demonstrated in a simple example in the end of §5.5.

5.7. Cartier matrices on de Rham quotients. To shorten the notation, we write
Ωf (µ)/dΩf for what actually is Ωf (µ)/(dΩf ∩ Ωf (µ)). In situations when this is a free
R-module of finite rank one can combine reduction modulo derivatives with computation
of the Cartier action modulo higher formal derivatives by means of congruences in order
to obtain Cartier matrices on Ωf (µ)/dΩf . Let us list the necessary steps:

• determine a basis in Ωf (µ)/dΩf ,
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• determine m such that Fm ⊂ dΩf ∩ Ωf (µ), check the mth Hasse–Witt condition
for µ and solve systems of congruences to determine the matrix Λ(m)(µ) of the
Cartier action modulo Fm,

• describe reduction of the basis in Ω
(m)
f (µ) from the second step to the basis in

Ωf (µ)/dΩf which was found in the first step and compute the matrix of the
Cartier action modulo dΩf using Λ(m)(µ).

In [9] we performed these steps for simplicial and hyperoctehedral Calabi-Yau families in
n dimensions. The results will be presented in §5.8. Let us note here that checking higher
Hasse–Witt conditions may be a difficult task. For these n-dimensional families we needed
the nth Hasse–Witt condition. The following theorem shows that these conditions hold
rather generally for families whose Newton polytopes are sufficiently simple. We consider
families

1− tg(x) = 0

with g ∈ Z[x±11 , . . . , x±1n ] and assume that the Newton polytope ∆ is reflexive. Examples
were given in §5.6. A proper face τ ⊆ ∆ is called a simplex of volume 1 if it has
dim(τ)+1 vertices and all lattice points in the R≥0-cone generated by τ are integer linear
combinations of the vertex vectors. More generally, the simplicial volume of τ is the index
of the lattice of points generated as Z-linear combinations of its vertices in the lattice of
integral points in the R-vector space spanned by them.

Theorem 47. [8, §3] Suppose p > n. If all proper faces of ∆ are simplices of volume 1
and all vertex coefficients of g(x) are in Z×p then for any open µ ⊆ ∆ and any k < p, the
k-th Hasse–Witt condition holds for µ over the ring ZpJtK.

Problem 48. State assumptions under which Hasse–Witt conditions hold for polytopes
of more general shape.

Solutions to this problem would allow to apply our methods to a bigger realm of
Calabi–Yau families.

5.8. p-adic Frobenius structures on differential equations. Let us look at the situa-
tion when the coefficients of f(x) depend on a parameter, that is we have Z[t] ⊂ R ⊂ ZpJtK
as in examples of Calabi–Yau families from §5.6. In these case Cartier matrices, which
we usually denoted by Λ, also depend on t. We will show that they satisfy very particular
differential equations.

Suppose that Ωf (µ)/dΩf is a free R-module of rankm and Λ(t) = (λi,j(t)) is the matrix
of Cartier operation in some basis ω1, . . . , ωm of this quotient module:

(26) Cpωi =
m∑
j=1

λi,j(t)ω
σ
j (mod dΩ̂f )

for i = 1, . . . ,m. We assume that R is p-adically complete and Ω̂f (µ)/dΩ̂f = Ωf (µ)/dΩf .
This will be the case in the examples below. Note that derivations of R, which act
on rational functions in Ωf (µ) by the usual rules of differential calculus, preserve this
modules. Since they commute with derivations in the variables x1, . . . , xn, derivations of
R also map the submodule dΩf to itself. This fact turns Ωf (µ)/dΩf into a differential
module. Pick a derivation, e.g. θ = t d

dt
, and write down the matrix of its action in our

basis: let N ∈ Rm×m be such that

(27) θωi =
m∑
j=1

Nij(t)ωj (mod dΩf ).

Let Ñ(t) denote the matrix of θ in the basis ωσ
i , i = 1, . . . ,m in Ωfσ(µ)/dΩfσ .
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Proposition 49. The Cartier matrix Λ satisfies the differential equation

(28) θ(Λ) = NΛ− ΛÑ .

Proof. Note that Cp and θ commute as operations on Ω̂f and Ω̂fσ :

θ ◦ Cp = Cp ◦ θ.

Perhaps the easiest way to check that they commute is by looking on the Cartier action
on formal expansions. Let us apply θ to the equation (26):

θ(Cp ωi) =
m∑
j=1

(
θ(λi,j)ω

σ
j + λi,j

m∑
k=1

Ñj,kω
σ
k

)
(mod dΩ̂fσ).

On the other hand, the Cartier operation is R-linear and therefore

Cp(θωi) = Cp

(
m∑
j=1

Ni,jωj

)
=

m∑
j=1

Ni,j

m∑
j=1

λj,kω
σ
k (mod dΩfσ).

Since Cp and θ commute, the two above expressions are equal and we obtain that θ(Λ)+

ΛÑ = NΛ. This is precisely our claim. □

The situation of modules Ωf (µ)/d
kΩformal with k ≥ 1 and matrices Λ(k)(t) can be

considered in exactly the same way yielding the same differential equation (28), see [7,
Prop 5.12].

Exercise 50. Suppose U(t), V (t) are fundamental matrices of solutions to θ(U) = NU

and θ(V ) = ÑV respectively. Assuming the multiple U−1ΛV makes sense, use (28) to
check that θ(U−1ΛV ) = 0. We can conclude that

Λ(t) = U(t)Λ0V (t)−1,

where Λ0 is a constant matrix.

Let us now suppose that the differential module Ωf (µ)/dΩf has a cyclic basis, that is
we have an element ω ∈ Ωf (µ) such that θi(ω), i = 0, . . . ,m−1 is a basis in this quotient
module. Let

L = θm + a1(t)θ
m−1 + . . .+ am−1(t)θ + am(t) ∈ R[θ]

be the differential operator such that Lω ∈ dΩf . We will call it the Picard–Fuchs differ-
ential operator. Then

N =


0 1 0 . . . 0
0 0 1 . . . 0

...
−am(t) −am−1(t) . . . −a1(t)

 .

Let y0, . . . , ym be a basis of solutions to the differential equation Ly = 0. Then it is
not hard to see that U(t) = (θiyj)0≤i,j≤m−1 is a fundamental solution to the system
θ(U) = NU . The Cartier matrix in the bases θiω and (θiω)σ repectively is then given by

Λ(t) = U(t)Λ0U(tσ)−1,

where the constant matrix Λ0 is yet to be determined. This formula expresses the funda-
mental observation due to Dwork that zeta functions in families can be computed using
solutions to their Picard–Fuchs differential equations.
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Definition 51. After Dwork, a p-adic Frobenius structure for an ordinary differential
operator

L = θm + a1(t)θ
m−1 + . . .+ am−1(t)θ + am(t) ∈ Q(t)[θ]

is defined as an invertible matrix Λ(t) ∈ Em×m
p satisfying the differential equation

θΛ(t) = N(t)Λ(t)− p tpΛ(t)N(tp).

Here Ep is the field of p-adic analytic elements, see (25). For simplicity we have given
this definition for the Frobenius lift tσ = tp, but it is not hard to modify it for general
Frobenius lifts σ. The differential equation here is the same as (28), if we note that
V (t) = U(tp) satisfies the system θV = ÑV with Ñ(t) = ptpN(tp). In [14] Dwork proves
that, if a p-adic Frobenius structure exists for an irreducible operator L, then it is unique
up to multiplication by a non-zero p-adic constant.

We can summarize that our Cartier matrices provide examples of p-adic Frobenius
structures for families of hypersurfaces. Let us now give examples in which the Cartier
matrices are given for almost all but finitely many primes p by a sort of universal expres-
sion, that is p enters the formula for Λ(t) as a variable.

Example 52. Consider the simplicial family

1− t

(
x1 + x2 + . . .+ xn +

1

x1 . . . xn

)
= 0.

Denote sn(t) = (n+ 1)(1− ((n+ 1)t)n+1). Over the ring

R = Z[t, sn(t)−1]

one has

Ωf (∆
◦)/dΩf

∼= ⊕n−1
i=0 Rθi

(
1

f(x)

)
.

The respective Picard–Fuchs operator L such that L(1/f(x)) ∈ dΩf is given by

(29) L = θn − ((n+ 1)t)n+1(θ + 1) . . . (θ + n).

The proof of this fact can be found in [8, §5].

The Picard–Fuchs differential operator (29) in the simplicial example has maximal
unipotent local monodromy at t = 0. In this case one can define the standard basis of
solutions to L near t = 0. This is a unique basis of the form

(30)

y0(t) = F0(t) ∈ 1 + tQJtK
y1(t) = F0(t) log(t) + F1(t)

y2(t) = F0(t)
log2(t)

2!
+ F1(t) log(t) + F2(t)

. . .

yn−1(t) =
n−1∑
j=0

Fj(t)
logn−1−j(t)

(n− 1− j)!

where Fj(t) ∈ QJtK, F0(0) = 1 and Fi(0) = 0 for i > 1. Now we can present Cartier
matrices for simplicial families with respect to the cyclic bases θi(1/f(x)) and θi(1/f(x))σ.
For simplicity we take the Frobenius lift tσ = tp.

Theorem 53 (§5 of [8] and Theorem 1.4 in [9]). For every p > n + 1 the Cartier
matrix for the simplicial family in n dimensions is given by Λ(t) = U(t)Λ0U(tp)−1 where
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U(t) = (θiyj)0≤i,j≤n−1 is the Wronskian matrix of standard solutions (30) to the Picard–
Fuchs operator (29) and

Λ0 = Λ(0) =


1 pα1 p2α2 . . . pn−1αn−1
0 p p2α1 . . . pn−1αn−2

...
0 0 . . . pn−1


with

αj = coefficient of xj in
Γp(x)

Γp(x/(n+ 1))n+1
, j = 1, . . . , n− 1.

Entries of the Cartier matrix Λ(t) = (λi,j(t))0≤i,j≤n−1 satisfy

λi,j(t) ∈ pjR,

where R ⊂ ZpJtK is the p-adic completion of Z[t, sn(t)−1], where sn(t) = (n+1)(1− ((n+
1)t)n+1).

This theorem provides an evidence to the prediction of Candelas, de la Ossa and van
Straten that p-adic zeta values occur as entries of the Frobenius structure in Calabi–Yau
families at t = 0. More precisely, in [11, §4.4] they conjecture that in general, for Calabi-
Yau families with a point of maximal unipotent monodromy at t = 0 the constants αj are
Q-linear combinations of p-adic zeta values and their products. Moreover, the rational
coefficients of these linear combinations are universal (independent of p). This is true in
the case of simplicial families because of the following expansion of the logarithm of the
Morita p-adic gamma function at x = 0:

log Γp(x) = Γ′p(0)x−
∑
m≥2

ζp(m)

m
xm.

Here all even p-adic zeta values are zero: ζp(2m) = 0 for m ≥ 1. With this we find that

Γp(x)

Γp(x/5)5
= 1− 8

25
ζp(3)x

3 +O(x4)

Γp(x)

Γp(x/6)6
= 1− 35

108
ζp(3)x

3 +O(x5)

Γp(x)

Γp(x/7)7
= 1−16

49
ζp(3)x

3 − 480

2401
ζp(5)x

5 +O(x6)

Γp(x)

Γp(x/8)8
= 1− 21

64
ζp(3)x

3 − 819

4096
ζp(5)x

5 +
441

8192
ζp(3)

2x6 +O(x7)

We also note that α1 = α2 = 0 for any n.

Example 54. In [8, §6] and [9, Theorem 1.5] we prove a similar theorem for hyper-
octahedral Calabi–Yau family in n dimensions. In this case also α1 = α2 = 0, and in
general7

αj = coefficient of xj in e−Γ
′
p(0)xΓp(x), j = 1, . . . , n− 1.

In contrast to the simplicial example above, hyperoctahedral Picard–Fuchs differential op-
erators aren’t hypergeometric.

7In our paper we have another somewhat more sophisticated expression for αj ’s. The simplification
given here was pointed out to us by Don Zagier.
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5.9. Integrality of mirror maps and instanton numbers. Mirror symmetry is a
relationship between Calabi–Yau manifolds. Two such manifolds may be very different
geometrically but are nevertheless equivalent when employed as ‘extra dimensions’ to
describe interaction of particles in string theory. In [10] physicists Candelas, de la Ossa,
Green and Parkes made a sensation: they predicted solutions to very hard problems of
enumerative geometry by doing miraculous computations with solutions of a differential
equation ’on the other side of the mirror’. We will briefly recall their discovery.

Candelas, de la Ossa, Green and Parkes considered the differential operator

(31) L = θ4 − 55t
(
θ + 1

5

) (
θ + 2

5

) (
θ + 3

5

) (
θ + 4

5

)
where θ = t d

dt
. The differential equation Ly = 0 has a singular point at t = 0 with

maximally unipotent local monodromy. There is a unique (up to multiplication by a
constant) solution which is analytic analytic at t = 0:

y0(t) =
∞∑
n=0

(5n)!

n!5
tn = 1 + 120t+ 113400t2 + . . . = F0(t) ∈ ZJtK.

There is also a unique solution of the form

y1(t) = F0(t) log(t) + F1(t) with F1(t) ∈ tQJtK.

Here F1(t) =
∑∞

n=1
(5n)!
n!5

(∑5k
j=1

5
j

)
tk does not have integral coefficients in contrast to

y0(t), but the authors of [10] observe integrality of the canonical coordinate:

q(t) = exp

(
y1(t)

y0(t)

)
= t exp

(
f1(t)

f0(t)

)
∈ tZJtK.

This observation was proved by by B.-H.Lian and S.-T.Yau in 1996. 8 We shall also
consider the next solution of the form

y2(t) = F0
log(t)2

2!
+ F1 log(t) + F2 with F2 ∈ tQJtK

and express the ratios yi/y0 in terms of the canonical coordinate:
y0
y0

= 1,
y1
y0

= log(q),

y2
y0

=
1

2
log(q)2 + 575q +

975375

4
q2 ++

1712915000

9
q3 + . . .

The series

Y (q) =

(
q
d

dq

)2
y2
y0

= 1 + 575q + 975375q2 + . . .

is called the Yukawa coupling. Candelas, de la Ossa, Green and Parkes write its Lambert
expansion in the form

Y (q) = 1 +
∑
d≥1

Nd d
3 qd

1− qd

and call Nd instanton numbers. They predict that for every d ≥ 1 numbers 5Nd coincide
with the numbers of degree d rational curves that lie on a generic threefold of degree 5
in P4:

5N1 = 2875, 5N2 = 609250,

5N3 = 317206375, 5N4 = 242467530000, ...

8If we substitute t 7→ t5 in L we will obtain the Picard–Fuchs operator of the simplicial family with
n = 4, see Example 52. It the follows from (i) in our Theorem 44 that the canonical coordinate is
p-integral for every p > 5.



CONGRUENCES AND COHOMOLOGY 35

Only the first two numbers were known at that time! The number 2875 of lines on a
general quintic was determined by H. Schubert in 1886. The number 609250 of conics
was determined by S. Katz in 1986. In 1993 G.Ellingsrud and S.Strømme computed
the number of cubic curves on the quintic threefold. Their result served as a crucial
cross-check for the above physicists’ prediction, which was made in 1991.

In 1990s the Gromov–Witten theory was developed to provide a rigorous basis for
counting curves on general manifolds. Subsequently, Givental and Lian–Liu–Yau proved
the mirror theorem which justified the equality of instanton numbers and genus zero
Gromov–Witten invariants. Let us note that, in contrast to the numbers of curves of
given degree on a manifold, instanton numbers can be computed easily. Computations
showed that in the above case (31), known as the quintic case, instanton numbers are
integral, though a priori they are expected to be rational numbers. Similarly, rigorous
count of numbers of rational curves of given degree (Gromov–Witten invariants) yields a
priory rational numbers, as this number is obtained via integration over a moduli space
of such curves. In [8] we prove the following claim.

Theorem 55 ([8], Corollary 1.9). For the quintic differential operator (31) instanton
numbers are p-integral for every p > 5.

Let us remark that Gromov–Witten invariants are a special case of more general BPS-
numbers, whose integrality was proved by Ionel and Parker in [16]. Combination of
their result with the mirror theorem should also yield a proof of integrality of instanton
numbers. The advantage of our proof is that it does not use mirror symmetry at all, it
is a direct proof in terms of the differential equation itself. Namely, we exploit the fact
that operator L has a p-adic Frobenius structure with special properties for almost all
primes p. We will sketch the idea in the rest of this section.

Consider a 4th order differential operator

(32) L = θ4 + a1(t)θ
3 + a2(t)θ

2 + a3(t)θ + a4(t)

with ai ∈ Q(t) for i = 1, . . . , 4. Assume also that ai(0) = 0 for all i. This is the condition
under which L has a maximal unipotent monodromy at t = 0. Consider the standard
basis of solutions to the differential equation Ly = 0 near t = 0:

yi(t) =
i∑

j=0

Fj(t)
logi−j(t)

(i− j)!
, i = 0, 1, 2, 3

with F0 ∈ 1 + tQJtK and Fj ∈ tQJtK for j > 0. Consider the fundamental matrix of
solutions U(t) = (θiyj)0≤i,j≤3. As we explained in §5.8, a p-adic Frobenius structure for
the operator L is a 4× 4 matrix

(33) Λ(t) = (λij(t))0≤i,j≤3 = U(t)


1 pα1 p2α2 p3α3

0 p p2α1 p3α2

0 0 p2 p3α1

0 0 0 p3

U(tp)−1

with special p-adic numbers α1, α2, α3 such that the matrix entries λij(t) are p-adic an-
alytic elements. That is, they can be approximated by p-adically by elements of Q(t).
Existence of such matrix is a strong arithmetic property of the operator L, and if it exists
it is unique. For the questions of integrality in this section we are interested in matrices
Λ(t) as above with the property that

(34) λij(t) ∈ pjZpJtK for all 0 ≤ i, j ≤ 3.
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Theorem 56 ([8], Theorems 1.4, 1.6 and 1.7). Suppose for the operator L as in (32)
there exist p-adic numbers α1, α2, α3 such that entries of matrix (33) have property (34).
Then

(i) the holomorphic solution is p-integral: y0 ∈ ZpJtK,
(i) the canonical coordinate is p-integral: q = exp(y1/y0) ∈ ZpJtK,

(iii) if in addition L is self-dual and α1 = 0, then the instanton numbers of L are
p-integral: nd ∈ Zp for all d ≥ 1

In Theorem 53 and Example 54 we have seen that the Cartier matrices Λ(t) have
α1 = 0 for simplicial and hyperoctahedral families with n = 4. Condition (34) is not
very hard to check in our construction of the Cartier operator, see [8, Prop 4.2]. The
above theorem then implies p-integrality for almost all p of instanton numbers for the
Picard–Fuchs operators

L = θ4 − (5t)5 (θ + 1) (θ + 2) (θ + 3) (θ + 4)

and
L = (1024t4 − 80t2 + 1)θ4 + 64(128t4 − 5t2)θ3

+ 16(1472t4 − 33t2)θ2 + 32(896t4 − 13t2)θ + 128(96t4 − t2)

of the simplicial and hyperoctahedral families respectively. The quintic operator (31)
differs from the first operator above by the change of variables t 7→ t5. One can show
that substitutions t 7→ tN preserve p-integrality of canonical coordinates and instanton
numbers for all p ∤ N , and hence Theorem 55 also follows from the simplicial case.

Problem 57. In [1] Gert Almkvist, Christian van Enckevort, Duco van Straten and
Wadim Zudilin make a search among differential operators L which are of order 4, self-
dual and have a point of maximally unipotent monodromy at t = 0. They look for oper-
ators which have arithmetic properties (i)-(iii) as in Theorem 56 for almost all primes
p. Such operators are called Calabi-Yau differential operators, and more than 400 such
operators we found experimentally up to now. Property (i) usually holds for all known
cases, (ii) was proved for some of them, and (iii) is only proved for the simplicial and
hyperoctahedral operators.

Construct p-adic Frobenius structures for other ‘experimental’ Calalbi-Yau operators
and check if they satisfy (34) and have α1 = 0.

It seems natural to conjecture that all experimentally found Calabi–Yau operators have
a p-adic Frobenius structure with property (34) and α1 = 0 for almost all primes p, from
which their arithmetic properties follow by Theorem 56.
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